Abbildung, bei zweielementiger Bildmenge?

Guten Morgen (um halb 2),

Bei dieser Aufgabe scheiden sich momentan leider die Geister, was die Lösung angeht.

Wieviele Abbildungen von {1,2,3,4} nach {1,2,3,4,5,6} gibt es, für die die Bildmenge(i) zwei Elemente hat

Die offizielle Musterlösung behauptet folgendes

"Bei diesem Fall müssen wir besonders aufpassen, denn hier gibt es 2 Fälle. Erstens: 3 Zahlenwerden auf eine Zahl abgebildet und eine Zahl auf eine Andere. Zweitens: Jeweils 2 Zahlen bilden auf die selbe Zahl ab.Bei beiden Fällen gibt es 2 Zahlen im Bildbereich, die beliebig aber unterschiedlich gewähltwerden dürfen. Daraus folgen schon mal 6·5 M öglichkeiten. Im ersten Fall müssen 3 der 4 Argumente auf die selbe Zahl abgebildet werden. Dafür gibt es 4 Möglichkeiten. Beim zweiten Fall muss es zwei Pärchen bei 4 Zahlen geben. Dafür gibt es 6 Möglichkeiten, aber da die Fälle,wie “1 und 3, und 3 und 1 bilden ein Paar” gleich sind müssen wir die 6 noch durch 2 teilen. Es folgt: 6·5·(4 +6/2) = 210"

Mir ist jetzt unklar, warum 6 durch 2 geteilt werden muss. Wir haben doch 6 Fälle. 1 und 2 bilden auf diesselbe Zahl ab

1 und 3 bilden auf diesselbe Zahl ab

1 und 4 bilden auf diesselbe Zahl ab

2 und 3 bilden auf diesselbe Zahl ab

2 und 4 bilden auf diesselbe Zahl ab

3 und 4 bilden auf diesselbe Zahl ab

=> 6 Möglichkeiten

Jetzt steht aber im Text "Fälle wie 1 und 3 und 3 und 1 bilden ein Paar" müssen gestrichen werden.

Und daraus würden dann 6 / 2 Möglichkeiten resultieren.

Aber die 6 Möglichkeiten waren doch nur (1,2), (1,3), (1,4). (2,3), (2,4) und (3,4). Da war doch diese Doppelung (1,3) und (3,1) gar nicht enthalten.

Oder meinen die damit, dass man die Fälle, dass z.b. (1,3) auf die Zahlen (3,1) abgebildet werden, streichen muss? Dann müssten aber auch alle Fälle wie (1,2) bilden auf (2,1) ab u.s.w. gestrichen werden und nicht nur die Hälfte?

Nehmen wir mal an, die erste getroffene Zahl in der Bildmenge wäre die 5 und die zweite getroffene Zahl in der Bildmenge wäre die 6. (Klappt natürlich auch mit 3 und 4 oder 1 und 2 als getroffene Zahlen in der Bildmenge.

Komme trotzdem auf 6 Fälle

was meinen die mit mit "1 und 3 bilden ein Paar und 3 und 1 bilden ein Paar" Meinen die ein Paar in der Bildmenge? Oder das 1 und 3 und 3 und 1 auf diesselbe Zahlen abgebildet werden? Wie genau sehen diese 6 / 2 = 3 Fälle eigentlich aus?

Mit gräulichen Füßen,

Bild zum Beitrag
Bilder, Studium, Schule, Mathematik, rechnen, Informatik, Menge, Statistik, Stochastik, Universität, Mengenlehre, Abbildung
Halboffenes Intervall offen oder nicht?

Guten Tag!

Sei A=(a,b] das halboffene reelle Intervall mit a<b, in welchem das a aber nicht das b enthalten ist. Jetzt frage ich mich, ob dieses Intervall als offene oder abgeschlossene Teilmenge der Reellen Zahlen eingestuft werden kann. Für abgeschlossen habe ich eine Begründung und für offen auch. Nur bei offen bin ich mir nicht ganz sicher ob das so hin haut, wie ich mir das denke.

Also. Zunächst sei Br(x) eine offene Umgebung um x mit dem Radius r>0. Dann ist eine Teilmenge V eines Metrischen Raumes X offen, wenn für alle x0 aus X gilt, dass ein r existiert, sodass Br(x0) Teilmenge von V ist. Dies ist hier ja offensichtlich nicht der Fall. Wenn ich nun b=x0 wähle, ist für jedes r>0 die Umgebung Br(b) nicht Teilmenge von A=(0,1]. Somit müsste A ja abgeschlossen sein, denn wenn sie nicht offen ist muss sie ja abgeschlossen sein. ABER: In meinem Skript steht als Definition:

  1. Eine Teilmenge V von X heißt offen, wenn [...] gilt.
  2. Eine Teilmenge W von X heißt abgeschlossen, wenn X\W offen ist (X\W ist das Komplement von W)

Wähle ich nun als unseren Metrischen raum das reelle Intervall B=[a-1,b] ist A Teilmenge davon. Nun folgende Argumentation:

B\A=[a-1,a] ist offensichtlich abgeschlossen. Daraus folgt laut des zweiten Teils der Definition, dass A offen ist.

Ich habe gelernt, dass die leere Menge und R selber offen und abgeschlossen zugleich sind, jedoch nicht, dass gleiches für Halboffene Intervalle gilt.

Aufklärungsbedarf! Ich würde mich über eine kurze Antwort auf die Frage im Titel und eine kurze Begründung freuen! Hinweise auf Fehler in meiner Argumentation würden ich auch begrüßen

Danke und LG

Max Stuthmann

Schule, Mathematik, Menge, Universität, Mengenlehre, Topologie, Analysis, unimathe

Meistgelesene Beiträge zum Thema Mengenlehre