Guten Morgen (um halb 2),
Bei dieser Aufgabe scheiden sich momentan leider die Geister, was die Lösung angeht.
Wieviele Abbildungen von {1,2,3,4} nach {1,2,3,4,5,6} gibt es, für die die Bildmenge(i) zwei Elemente hat
Die offizielle Musterlösung behauptet folgendes
"Bei diesem Fall müssen wir besonders aufpassen, denn hier gibt es 2 Fälle. Erstens: 3 Zahlenwerden auf eine Zahl abgebildet und eine Zahl auf eine Andere. Zweitens: Jeweils 2 Zahlen bilden auf die selbe Zahl ab.Bei beiden Fällen gibt es 2 Zahlen im Bildbereich, die beliebig aber unterschiedlich gewähltwerden dürfen. Daraus folgen schon mal 6·5 M öglichkeiten. Im ersten Fall müssen 3 der 4 Argumente auf die selbe Zahl abgebildet werden. Dafür gibt es 4 Möglichkeiten. Beim zweiten Fall muss es zwei Pärchen bei 4 Zahlen geben. Dafür gibt es 6 Möglichkeiten, aber da die Fälle,wie “1 und 3, und 3 und 1 bilden ein Paar” gleich sind müssen wir die 6 noch durch 2 teilen. Es folgt: 6·5·(4 +6/2) = 210"
Mir ist jetzt unklar, warum 6 durch 2 geteilt werden muss. Wir haben doch 6 Fälle. 1 und 2 bilden auf diesselbe Zahl ab
1 und 3 bilden auf diesselbe Zahl ab
1 und 4 bilden auf diesselbe Zahl ab
2 und 3 bilden auf diesselbe Zahl ab
2 und 4 bilden auf diesselbe Zahl ab
3 und 4 bilden auf diesselbe Zahl ab
=> 6 Möglichkeiten
Jetzt steht aber im Text "Fälle wie 1 und 3 und 3 und 1 bilden ein Paar" müssen gestrichen werden.
Und daraus würden dann 6 / 2 Möglichkeiten resultieren.
Aber die 6 Möglichkeiten waren doch nur (1,2), (1,3), (1,4). (2,3), (2,4) und (3,4). Da war doch diese Doppelung (1,3) und (3,1) gar nicht enthalten.
Oder meinen die damit, dass man die Fälle, dass z.b. (1,3) auf die Zahlen (3,1) abgebildet werden, streichen muss? Dann müssten aber auch alle Fälle wie (1,2) bilden auf (2,1) ab u.s.w. gestrichen werden und nicht nur die Hälfte?
Nehmen wir mal an, die erste getroffene Zahl in der Bildmenge wäre die 5 und die zweite getroffene Zahl in der Bildmenge wäre die 6. (Klappt natürlich auch mit 3 und 4 oder 1 und 2 als getroffene Zahlen in der Bildmenge.
Komme trotzdem auf 6 Fälle
was meinen die mit mit "1 und 3 bilden ein Paar und 3 und 1 bilden ein Paar" Meinen die ein Paar in der Bildmenge? Oder das 1 und 3 und 3 und 1 auf diesselbe Zahlen abgebildet werden? Wie genau sehen diese 6 / 2 = 3 Fälle eigentlich aus?
Mit gräulichen Füßen,