Man hat 10 Kugeln, 2 davon sind rot und 8 grün.
Diese befinden sich in einer undurchsichtigen Urne.
Man zieht 10 mal hintereinander eine Kugel aus der Urne, ohne zurücklegen.
Das macht man solange, bis keine Kugel mehr in der Urne ist.
Die gezogenen Kugeln werden horizontal auf einer Linie der Reihe nach von links nach rechts nebeneinander gelegt, und zwar genau in der Reihenfolge, wie sie gezogen wurden.
Wie hoch ist die Wahrscheinlichkeit, dass die beiden roten Kugeln in der Mitte liegen?
(4x grün, 2x rot, 4x grün)
Dabei ist es völlig egal, welche grünen bzw. welche roten wo liegen, es kommt nur darauf an, dass irgendwelche 4 grünen links liegen, irgendwelche 4 grünen rechts liegen und irgendwelche 2 roten in der Mitte liegen.
Mit anderen Worten, die Farbkombination / das Farbmuster 4x grün, 2x rot, 4x grün, also
grün, grün, grün, grün, rot, rot, grün, grün, grün, grün
soll eingehalten werden, aber es ist dabei völlig egal, um welche grüne oder rote Kugel es sich dabei ganz genau im einzelnen handelt, es kann also irgendeine grüne und irgendeine rote Kugel sein. Aber die roten Kugeln müssen nacheinander gezogen werden und sie müssen beim 5-ten mal ziehen und 6-ten mal ziehen gezogen werden. Und es spielt keine Rolle, welche der beiden vorhandenen roten Kugeln beim 5-ten mal ziehen oder 6-ten mal ziehen gezogen wird.
Ich hoffe, dass ich die Frage unmissverständlich formuliert habe.
Ich habe ein kleines Computerprogramm geschrieben, und das Ganze simuliert.
Ich bin dabei auf eine Wahrscheinlichkeit von zirka 22,1 % gekommen, wobei die letzte Ziffer eventuell noch unsicher bzw, gerundet ist.
Ich könnte mich damit jetzt zufrieden geben, aber -->
1.) Ich könnte beim programmieren einen Denkfehler gemacht haben, dann wäre mein Ergebnis falsch.
2.) Ich würde gerne wissen, wie man das ohne Monte-Carlo-Simulation ausrechnet.