Mathematikstudium – die neusten Beiträge

Hotel mit abzählbar unendlich vielen Zimmern?

Aufgabe:

Ein Hotel mit abzählbar unendlich vielen Zimmern ( eines für jede natürliche Zahl) ist immer voll besetzt und niemand entscheidet sich zu verreisen. Es ist dennoch immer möglich Platz für einen zusätzlichen gast zu finden, indem jeder vorhandene Gast aufgefordert wird in das Zimmer mit der nächsthöheren Nummer zu ziehen. So kann der neue Gast Zimmer 1 belegen.

a) Es werden nun keine weiteren Gäste aufgenommen und die Gäste entscheiden sich jede Nacht in ein neues Zimmer zu ziehen. Können die Gäste jede Nacht das Zimmer wechseln, ohne jemals dasselbe zu belegen wenn das Hotel eine Strikte Regel hat, dass jedes Zimmer in jeder Nacht besetzt sein muss?

b) Es wurden abzählbar unendlich viele neue Stockwerke hinzugefügt und nun soll in den zuvor vorhandenen Zimmern ein unendliches Buffetrestaurant eingerichtet werden, sodass alle Gäste aus ihren alten Zimmern in die neuen Zimmer in den oberen Stockwerken umziehen müssen. Wie lässt sich jedem Gast ein neues Zimmer zuweisen, ohne dass ein Zimmer in den oberen Stockwerken leer steht?

Ich sitze schon ne weile an dieser Aufgabe und brauche Hilfe

Meine gedanken soweit:

a) hätte gedacht nein, weil wenn alle ein zimmer weitergehen mussder "letzte" zuruck in zimmer 1, damit dieses belegt ist, dies geschieht immer wieder bis der Gast, welcher bei Zimmer 1 startet wieder bei Zimmer 1 ankommt.

b) kann man nicht einfach sagen das der Gast in Zimmer 1 in das erste Zimmer im oberen Stockwerk zieht, der Gast in Zimmer 2 dann in das zweite? oder vertehe ich hier irgendetwas nicht

danke schon einmal

Mathematik, Algebra, lineare Algebra, Mathematikstudium, Textaufgabe Mathe

Erklärung zur Beschleunigung in einer Kreisbewegung?

Gerade habe ich fast alles zu Kreisbewegungen verstanden und bin jetzt dabei, das letzte Rätsel diesbezüglich zu knacken, und zwar die Beschleunigung.

Was ich eigentlich immer dachte, war, dass die Beschleunigung die 2. Ableitung von r ist. Ich meine, der Vektor von v ist ja auch die Ableitung von r.

Dementsprechend dachte ich, dass der Vektor von der Zentripetalbeschleunigung die 2. Ableitung von r ist, weil das von dem Vektorinhalt so passt, aber anscheinend steht davor nicht 2. zeitliche Ableitung von phi, sondern was anderes, deshalb fällt das schon mal weg?

Ist es stattdessen richtig, dass der eine Vektor von a antiparallel zu r ist, und der andere (anti)parallel zu v? Dann würde das, was im Vektor steht, schonmal Sinn machen.

Und das Zeug davor? Wenn die Vektoren einfach nur die (anti)parallele Version von einem anderen Vektor sind, hat das auch nichts mit Ableitung zu tun, oder? Heißt das, das Zeug vor den Beschleunigungsvektoren hat z.B. nichts mit der Kettenregel einer Ableitung zu tun, im Gegendatz zu dem Zeug vor V?

Oder sind die Vektoren doch Ableitungen von irgendwas? Wenn ja, ich dachte, a ist immer 2. Ableitung von r, wieso sind das dann unterschiedliche Vektoren?

Oder geht es bei dem Zeug davor einfach nur darum, wie lang der Vektor ist?

Also bei dem 2. dann w^2r, weil das die Länge eines normalen Beschleunigungsvektors ist, oder?

Und bei dem 1. Teil die Winkelbeschleunigung. In dem Fall hat dann R nichts mit der Beschleunigungsformel zu tun, weil die Winkelbeschleunigung nur d^2phi/dt^2 ist?

Also besteht die Gesamtbeschleunigung aus 2 Teilen, dabei geben die Vektoren die Richtung an und der Teil davor jeweils die Länge?

Oder hat das doch was mit Ableitung von v oder r zu tun?

Entschuldigt die lange Frage, ich hoffe, man konnte sie verstehen.

Und aus Interesse, Wieso ist da nur ein Vektor a aufgezeichnet?

Bild zum Beitrag
Mathematik, Geschwindigkeit, Biologiestudium, Experimentalphysik, Formel, Mathematikstudium, Physiker, Vektoren, Vektorrechnung, Kinematik, Kreisbewegung, Physikstudium

Meistgelesene Beiträge zum Thema Mathematikstudium