Integral – die neusten Beiträge

Bin ich diese Aufgabe richtig bearbeitet?

Guten Tag;)

Meine Aufgabe lautet:

Sei X eine standard-normalverteilte Zufallsvariable und Y sei normalverteilt mit den Parametern μ ∈ R und σ^2 > 0. Berechnen Sie E[X^n] und anschließend E[Y^n]?

Den Erwartungswert von X^n habe ich bereits berechnet. Jetzt bin ich gerade dabei den Erwartungswert von Y^n. zu berechnen. Ich habe da mal was aus dem Skript mitgebracht:



Die Integralgrenzen sind minus unendlich und unendlich. Ich würde dann mit dem Limes arbeiten. Oder muss ich vorher noch die Existenz beweisen? Ich meine, wenn ich bei meinem Plan (der folgt sofort) ein Ergebnis erhalte, dann habe ich die Existenz bewiesen oder?

Mein Plan lautet:

Erst einmal möchte ich substituieren.



Wenn wir das in unsere Formel einsetzen, dann würde ich gerne zwei Fallunterscheidungen vornehmen:

  1. Fall: x<=0, n gerade
  2. Fall: x>0, n ungerade

Soll ich vielleicht andere Fallunterscheidungen machen?

Macht das soweit Sinn?

Bei den Fallunterscheidungen würde ich dann so vorgehen, dass ich die Integrale (in den jeweiligen Fallunterscheidungen) berechne. Weiß jemand die Lösung der Integrale? Ich würde gern vergleichen wenn ich soweit bin, da man sich dort auf jeden Fall gut verrechnen kann. Falls nicht, kann ich bestimmt mit Chat GPT oder Wolfram Alpha vergleichen:)

Noch besser fände ich, wenn mir jemand sagen kann, was es mit der Aufgabe auf sich hat. Beim Erwartungswert von X^n kann ich mit den Ergebnissen aus den Fallunterscheidungen nicht viel anfangen. Besteht der Sinn darin, dass man lernt den Erwartungswert zu berechnen?

Über jede Information zu der Aufgabe wäre ich dankbar. Ich werde dann mal mein Wochenende opfern!

Beste Grüße & ein schönes Wochenende wünsche ich:)

rechnen, Funktion, Ableitung, Gleichungen, höhere Mathematik, Integral, Integralrechnung, Mathematiker, Stochastik, Beweis, Funktionsgleichung, Grenzwert, Analysis

Wie genau muss man im Abitur die Zeichnungen machen?

Guten Abend,

wie genau muss man die Zeichnung machen? Reicht es hier einfach im Abitur die Extremstellen und Nullstellen der Ableitungsfunktion an der richtigen Stelle (x-Wert) zu zeichnen (und natürlich muss es stimmen, ob sich die Funktion ober oder unter der x-Achse befindet)? Oder muss man immer das Lineal anlegen und die Steigung der Funktion f genau an mehreren Stellen ablesen, um die Ableitungsfunktion so genau wie möglich zu zeichnen? (Für die ganze Aufgabe mit 5 Punkten hat man rund 15 Minuten Zeit)

  • Den zweiten Teil dieser Aufgabe verstehe ich noch nicht so wirklich, was das [[[[[„Nehmen Sie Stellung zu der folgenden Behauptung: Für jede Stammfunktion F von f gilt: F(-4) ≈ F(1).“]]]]] bedeutet. Wieso ergibt sich daraus wie man es im Lösungsvorschlag sehen kann für F(-4) die Fläche zwischen -4 und ≈ - 1,3 und für F(1) die Fläche zwischen ≈ - 1,3 und 1? Könnt ihr mir das bitte ganz genau erklären? Wie weiß ich in welche Richtung von beispielsweise F(1) die Fläche dann gemessen wird? Was bedeutet es allgemein wenn ich in F(x) einen Wert für x einsetze?

Aufgabe

Arbeitsblatt zur Aufgabe

Lösungsvorschlag

Bild zum Beitrag
rechnen, Funktion, e-Funktion, Ableitung, Differentialrechnung, Exponentialfunktion, ganzrationale Funktionen, Gleichungen, Integral, Integralrechnung, Nullstellen, quadratische Funktion, Stammfunktion, Funktionsgleichung, Graphen, Parabel, Analysis

Meistgelesene Beiträge zum Thema Integral