Netzebenenabstand bestimmen?

Hallo, ich habe hier eine Aufgabe vorliegen, bei der ich nicht weiterkomme. Deshalb bitte ich euch um Aufklärung.

Die K_alpha Linie der Kupferanode misst man bei einem Glanzwinkel für das erste Maximum von 3,8°. Bestimme Netzebenenabstand d des Kristalls. (Moseleysches Gesetz anwenden!)

Ich habe das nun so gelöst:

Um den Netzebenenabstand des Kristalls zu bestimmen, können wir das Moseleysche Gesetz verwenden, das besagt, dass die Frequenz der charakteristischen Röntgenstrahlung eines Elements mit der Ordnungszahl Z proportional zur Wurzel aus der Frequenz ist:

√f = R_∞ * √(Z-σ)

wobei R_∞ Rydberg-Konstante, Z Ordnungszahl, σ Abschirmkonstante ist

In unserem Fall interessieren wir uns für den Netzebenenabstand

d, der mit der Wellenlänge λ der charakteristischen Röntgenstrahlung und dem Glanzwinkel θ zusammenhängt:

d*sin(0)=m*λ

wobei m die Ordnung des Maximums ist

Um den Netzebenenabstand d zu finden, müssen wir zunächst die Wellenlänge λ der charakteristischen Röntgenstrahlung bestimmen. Dies können wir mit dem Bragg'schen Gesetz tun:

2*d*sin(0)= n*λ

Durch Umstellen nach λ erhalten wir:

λ= (2*d*sin(0)) / (n)

Da n=1 (erstes Maximum) ist, vereinfacht sich die Gleichung zu:

λ= 2*d*sin(0)

Um nun den Netzebenenabstand d zu finden, setzen wir die gegebenen Werte ein. Da uns der Glanzwinkel θ gegeben ist, können wir ihn direkt verwenden.

Jetzt setzen wir die gegebenen Werte ein:

d*sin(3,8)= λ

Da wir λ in Bezug auf d ausdrücken können, verwenden wir das Moseleysche Gesetz:

λ = (h*c)/ (√f) = (h*c)/ (R_∞ * √(Z- σ)

Nun können wir diese Gleichungen gleichsetzen und den Netzebenenabstand d berechnen:

d*sin(3,8) = (h*c)/(R_∞ *sin (3,8) * √(Z- σ))

Ist das richtig so?

Licht, Wellen, Formel, Optik, Vektoren, Wellenlänge
Quantenphysik/ Photonen / Photoeffekt?

Quantenphysik

Ich stehe vor folgender Aufgabe. Bei der b habe ich gar keine Idee. Ansonsten habe ich die Aufgaben gelöst, allerdings weiß ich nicht, ob sie stimmen

Aufgabe: UV-Licht der Wellenlänge λ=300 nm tri􏰃 auf eine Cäsiumschicht, deren Fläche A=1cm2 beträgt. Die Stärke der Bestrahlung beträgt 2,0 W/cmhoch2.

a) Berechnen Sie die Energie eines Photons.

Hier habe ich Eph= 6,62 *10hoch-19 J raus

b) Bestimmen Sie die Anzahl der Photonen, die jede Sekunde auf die bestrahlte Fläche auftreffen.

Hier habe ich erhlichgesagt keinen Ansatz . Eine Erkläreung mit Formel wäre sehr hilfreich. Ich bitte um einen verständlichen Rechenweg Danke:)

c) Berechnen Sie die maximale kinetsche Energie, die ein durch die Strahlung herausgelöstes Elektron besitzt. Geben Sie die Energie in J und in eV an.

also ich weiß, dass Ekin= h*f - Wa (Wa ist die Ausstritsarbeit und also fg*h)

da es sich um Cäsium handelt ist Wa ja bekannt (1,9eV Formelsammlung) und die Energie des Photons habe ich in Aufgabenteil a) bereits emittelt

Meine Rechnung : Ekin= 6,62*10hoch-19 J -1,9eV = 3,576*10hoch Minus 19 Joule.

ist das richtig?

d) Ermitteln Sie die maximale Gegenspannung, die das Elektron überwinden könnte.

Wahrscheinlich stimmt es nicht. Mein Ansatz: ich weiß aus c) die maximale kinetische Energie meines Photons (fall c stimmt)

Ekin= e* U EkinMAX= ->= 3,576*10hoch Minus 19 Joule. U= EkinMax/e =2,232 Volt ist das richtig?

Energie, Licht, Spannung, Formel, kinetische Energie, Physik, Physiker, Quantenphysik, Volt, Elektronen, Photoeffekt, Photonen, Wellenlänge
Allgemeine Fragen zur Physik?

Hallo,

Ich habe viele Fragen zu Physik. Ich nummerieren sie durch, damit es übersichtlicher ist.

Licht:

Die grundlegende Frage ist, wie ich mir Licht bzw. elektromagnetische Wellen vorstellen kann.

1. Wir haben alle schonmal von "Lichtstrahlen" gehört. Aber ein Strahl ist gerade. Diese Aussage widerspricht ja, dass Licht aus Wellen besteht. Wie kann das sein?

2. Apropos Wellen: wir haben gelernt, dass Wellen aus vielen Oszillatoren bestehen, die miteinander gekoppelt sind. Bei Licht ist das ja nicht so, da gibt es nur die Photonen.

3. Stichwort Photonen: Wie kann ich mir Photonen vorstellen? Man hört immer, dass sie aus Energie bestehen, aber so ganz darunter kann ich mir nichts vorstellen.

Quantenmechanik:

4. Wie kann Quantenverschränkung überhaupt funktionieren? Ich habe immer gehört, dass nichts schneller als Licht sein kann, auch keine Informationsübertragung. Aber bei der Quantenverschränkung ist das doch der Fall, oder? Ich meine, wenn zwei Personen ganz weit voneinander entfernt stehen, auf zwei Teilchen schauen, die miteinander verschränkt sind und einer der beiden das Teilchen verändert, weiß der andere sofort, dass sich da was getan hat. Eine Information wurde übertragen. Oder verstehe ich da was falsch?

Energie, Licht, Wellen, Strahlung, Atom, Lichtgeschwindigkeit, Optik, Physiker, Quantenmechanik, Quantenphysik, Relativitätstheorie, spin, elektromagnetische Wellen, Elektromagnetismus, Photonen, Wellenlänge
Wie funkieren Infrarot Filter durch Absorption?

Wenn IR Strahlung durch die Moleküle in einem solchen Filter absorbiert wurde, dann wird die Energie in Thermische Energie umgewandelt. Gleichzeitig wird im thermischen Gleichgewicht nun Schwarzkörperstrahlung abgegeben, die größtenteils bei Raumtemperatur im IR Bereich liegt.

Wie also kann zB. ein IR Absorptionsfilter in einer Brille das Auge schützen, wenn der Filter die IR Strahlung direkt wieder selber emittiert?

Praktisch kann ich mir bloß vorstellen, dass die Thermische Energie statt durch Wärmestrahlung schneller durch Konvektion und Wärmeleitung in die umgebende Luft abgegeben wird.

Follow up Frage:

Generell hinterfrage ich momentan auch den Unterschied zwischen Absorbern und Reflektoren auf der Wechselwirkungsebene zwischen Licht und Materie:

  • Ein Absorber kann durch seine spezifischen Eigenschaften Photonen bestimmter Energien absorbieren, was zu einem zu Temperaturerhöhung führt (Translation, Rotation, Vibration) und bei Passender Energie zu angeregten Elektronenzuständen. Die thermische Energie wird durch schwarzkörperstrahlung abgegeben, die angeregten Elektronenzustände fallen wieder zurück und emittieren ein Photon mit gleicher Energie?
  • Bei einem Reflektor bin ich mir noch unsicherer, manche behaupten, dass ein Reflektor direkt so absorbiert, dass nichts in thermische Energie umgewandelt wird, sondern direkt ein Elektron angeregt wird und durch das sofortige zurückfallen ein Photon mit gleicher Energie emittiert wird (zum Beispiel durch verbotene energiezustände im Energieband von Kristallstrukturen). Doch das erklärt beispielsweise nicht, warum beim zurückfallen in den Grundzustand ein Photon in die Richtung emittiert wird, die dem Reflektionsgesetz folgt. Andere behaupten, dass bei Betrachtung von reflektionserscheinungen besser die Wellenvorstellung benutzt werden sollte und beim reflektieren nichts absorbiert und wieder emittiert wird, in dem Sinne wäre ein Absorber ja eigentlich dann auch bloß ein Reflektor.
Energie, Chemie, Licht, Wärme, Astrophysik, Atom, Atomphysik, Formel, Lichtgeschwindigkeit, Physik, Physiker, Quantenmechanik, Quantenphysik, Relativitätstheorie, Thermodynamik, Elektromagnetismus, Elektronen, Photonen, Wellenlänge
Energieerhaltung bei einer idealen erzwungenen Schwingung?

Angenommen, wir haben ein Federpendel ohne Wärmeverlust. Nun stellen wir die Frequenz des Erregers deutlich höher ein als die Eigenfrequenz des Oszillators, so dass der Oszillator mit der Frequenz des Erregers schwingt, aber mit einer sehr kleinen Amplitude. Die Energie einer mechanischen Welle sollte proportional zur Amplitude und proportional zur Frequenz sein.

Der Erreger hat eine konstante Amplitude und durch die Erhöhung der Kreisfrequenz wird mehr Energie in das System gepumpt, aber wenn nun der Oszillator in diesem Fall eine geringere Amplitude erhält, wo ist dann die Energie verloren gegangen oder ist sie nur beim Erreger selbst geblieben, weil sie einfach nicht übertragen wurde? Wenn wir die Frequenz in diesem Fall langsam absenken und uns dem Resonanzfall nähern, können wir uns dann vorstellen, dass sich die Energie vom Erreger zum Oszillator verlagert hat? Das würde dann bedeuten, dass die Übertragung im Resonanzfall maximal ist, der Oszillator bekommt die maximal mögliche Energie übertragen... was im Umkehrschluss bedeutet, dass der Erreger im Resonanzfall die meiste Energie verliert? Wenn ich mir das mit einem Motor vorstelle, braucht der Motor im Resonanzfall die meiste Leistung, weil es der "schwierigste" fall ist? Immerhin wird im Resonanzfall relativ von allen Möglichkeiten die meiste Energie auf den Oszillator übertragen.

Energie, Licht, Elektrotechnik, Wellen, Formel, Mechanik, Physik, Physiker, Quantenphysik, Schwingungen, Frequenz, Elektronen, Wellenlänge

Meistgelesene Fragen zum Thema Wellenlänge