Hallo liebe Matheexperten,
ich beschäftige mich derzeit mit der Herleitung der Winkelbestimmung für zwei Vektoren. Dabei haben wir diese Herleitung bekommen:
Jetzt frage ich mich, warum die Umformung der beiden blauen Gleichungen so gilt. Warum ist also das Skalarprodukt von zwei Vektoren gleich mit dem Produkt der Beträge der Vektoren, wenn diese parallel und gleich gerichtet sind?
Leider haben wir auch keine wirkliche Defintion für das Skalarprodukt bekommen und es stattdessen vielmehr als „Mittel zum Zweck“ für die Bestimmung einer möglichen Orthogonalität gesehen.
Dieses Video bezeichnet das Skalaprodukt als „Produkt eines projezierten Vektors B auf einen Vektor V mit dem Vektor V“ (https://youtu.be/LyGKycYT2v0?si=pdMU_K0nO6LqqqfE, 1:43 min)
Würde das dann im Umkehrschluss bedeuten, dass sich der Betrag der Projektion des Vektors B auf den Vektor V dem tatsächlichen Betrag des Vektors B annähert, wenn der Winkel zwischen dem Vektor B und dem Vektor V gegen null läuft?
Wäre das dann auch die Erklärung dafür, dass die Vektoren B und V parallel und richtungsgleich sein müssen, damit die blau unterstrichene Gleichung so gilt?
Ich habe versucht, diese „Regel“ selbst mit Beispielen zu beweisen, bin aber leider erfolglos…
LG