Kann mir jemand hierbei helfen?

Einleitung

Im ersten Versuch habt ihr erfahren, dass ein stromdurchflossener Leiter ein Magnetfeld erzeugt. In diesem Versuch wird der Einfluss eines sich verändernden Magnetfeldes auf einen elektrischen Leiter untersucht. Dieses Prinzip wird auch in Generatoren angewendet, wie z.B. im Fahrraddynamo und Windkraftanlagen.

Was ihr am Ende können sollt:

• Beschreiben können, wie sich die Bewegung von Spule und Magnet im Verhältniss zueinander auf das Magnetfeld auswirkt.

Was ihr vorher wissen solltet:

• Wie eine Spule zu einem Elektromagneten verändert werden kann.

• Wie nachgewiesen wird, dass eine elektrische Spannung, anliegt.

Durchführung

Baut den Versuch wie in Abbildung 1 dargestellt auf. Verwendet dabei die Spule mit 20.000 Windungen. Achtet darauf, dass euer Multimeter auf Volt eingestellt ist. Achtung: Beginnt immer mit dem größten Messbereich (1000 V) und schaltet dann herunter!

(a) Bewegt den Magneten mit dem Südpol nach vorne langsam in die Spule hinein. Lasst den Magneten kurz in der Spule ruhen und zieht ihn dann langsam wieder heraus. Beob- achtet dabei die Veränderung der Anzeige des Messgerätes. Wiederholt den Versuch indem ihr

(b) den Magneten schneller in die Spule bewegt.

(c) den Magneten langsamer in die Spule bewegt.

(d) den Magneten mit dem Nordpol nach vorne in die Spule bewegt.

(e) den Magneten in der Spule ruhen lasst.

(f) den Magneten festhaltet und die Spule bewegt.

(g) die Spulen mit 1600 Windungen verwendet und (a) wiederholt.

Das sind meine Beobachtungen:

(a) Wenn der Magnet langsam in die Spule hineinbewegt wird, steigt die Anzeige des Messgeräts an. Wenn der Magnet wieder herausgezogen wird, fällt die Anzeige ab.

(b) Beim schnellen Hineinbewegen des Magneten steigt die Anzeige schneller an und fällt auch schneller ab, wenn der Magnet herausgezogen wird.

(c) Beim langsamen Hineinbewegen des Magneten steigt die Anzeige langsamer an und fällt auch langsamer ab, wenn der Magnet herausgezogen wird.

(d) Wenn der Magnet mit dem Nordpol nach vorne in die Spule bewegt wird, zeigt das Messgerät eine Veränderung in der entgegengesetzten Richtung im Vergleich zu (a).

(e) Wenn der Magnet in der Spule ruht, gibt es keine Veränderung in der Anzeige des Messgeräts.

(f) Wenn der Magnet festgehalten und die Spule bewegt wird, gibt es eine Veränderung in der Anzeige des Messgeräts.

(g) Mit der Spule mit 1600 Windungen wird eine ähnliche Veränderung beobachtet wie in (a), jedoch möglicherweise mit geringerer Spannung aufgrund der geringeren Anzahl von Windungen.

Sind die so richtig?

Bild zum Beitrag
Experiment, Studium, Schule, Elektronik, Strom, Bildung, Magnet, Unterricht, Elektrotechnik, Spannung, Beobachtung, Durchführung, Elektrizität, Formel, Induktion, Magnetismus, Physik, Physiker, Protokoll, Schaltung, Widerstand, Elektromagnetismus, Magnetfeld
Weshalb ist beim TP4056 ein Spannungsteiler zum Anschließen des NTC (inverser temperaturabhängiger Widerstand) empfohlen?

Zu sehen ist das der Widerstand NTC (negativer Thermistor) parallel mit R2 mit GND verbunden ist und das die Parallelschaltung NTC und R2 mit R1 in Reihe geschaltet ist, sodass ein Spannungsteiler vorliegt.

Ich habe verstanden, dass dieser Aufbau gewählt wurde damit der uC für die verschiedensten Batterien mit verschiendenen Lade- und Entladungstemperaturbereichen kompatibel ist. Das Eingangssignal muss also relativ zur im uC vorhandenen Skala zu Lade-/Entladetemperatursignalbereich skalliert werden.

" If TEMP pin's voltage is below 45% or above 80% of supply voltage VIN for more than 0.15S, this means that battery's temperature is too high or too low, charging is suspended. "

[ source TP4056 Datasheet ]

Im Abschnitt "Working out R1 and R2 for the TP4056" folgender Quelle wird gezeigt, wie R1 und R2 berechnet werden können.

https://www.best-microcontroller-projects.com/tp4056-page2.html

Zwei parallel geschaltete Widerstände (z.B. R2 und NTC) haben einen geringeren Gesamtwiderstand als einzelnen Widerstandswert.

Zwei in Reihe geschaltete Widerstände (z.B. NTC und R1) haben einen höheren Gesamtwiderstandswert als einzeln.

Verstehe ich es richtig, dass die Parallelschaltung von R2 dazu dient, den am Eingang TEMP gemessenen Widerstand kleiner zu skallieren und R1 in Reihe dazu dient den gemessenen Widerstand größer zu skalieren, falls nötig?

Ist Vin dabei einfach die bei VCC anliegende Spannung?

Bild zum Beitrag
Elektrik, Spannung, Elektrizität, Elektro, Schaltung, Widerstand
Pulldown-Widerstand?

Hallo, ich verstehe wie und wann ich Pullup-/Pulldown-Widerstände sinnvoll einsetzen kann, habe aber noch nicht verstanden, weshalb sie derart funktionieren.

Ich nehme Folgendes an:

  • Ein Dateneingang wird via Spannungsmessung Pin-Eingang festgestellt und interpretiert
  • Der Eingang an einem Pin hat einen sehr großen Widerstand
  • Ein High liegt bei hoher Spannung über dem Eingang abfallender Spannung ab, ein Low bei wenig bis keiner darüber abfallender Spannung
  • An einem Eingangs-Pin kann innen im uC ein höheres Potenzial (+) oder ein niedrigeres Potential (-) anliegen
  • Ist das im innerem des uC anliegende Potential positiv werden Elektronen vom niedrigerem dorthin gezogen
  • Ist das im innerem des uC anliegende Potential negativ werden Elektronen zum niedrigerem Potenzial außerhalb emittiert

Ist nun z.B. ein Eingang über einem Taster mit GND (-) im Schaltbild verbunden und ein Pulldown-Widerstand vom Eingang aus ebenfalls mit GND verbunden, verstehe ich nicht weshalb EMF-Spannungen über den Widerstand abfallen. Weshalb fließen zudem nicht Elektronen vom Pulldown-GND durch den Pulldown-Widerstand zum in den Pin-Eingang und erzeugen dort über den Eingangswiderstand eine Spannung/High?

Ich verstehe bei Erklärvideos nicht weshalb der Widerstand die Spannung am Eingang wegnimmt oder dorthin leitet. (Hoch-/Runterziehen?)

Auch wird in den Erklärungen immer die technische Stromrichtung verwendet.

Spannung, Elektrizität, Schaltung, Widerstand
Wieso funktionieren Pullup/Pulldown-Widerstände?

Hallo, trotz schauen mehrerer Videos und Selbsterklärversuche fehlt mir noch eine Information, um zu verstehen, wieso Pullup/Pulldown-Widerstände funktionieren. Folgende Informationen habe ich:

  • Funktion ohmscher Widerstands,
  • Physikalische Stromrichtung,
  • EMF-Störsignale als Ursache für ungewollte Signale am Eingangs-Pin (von z.B. MC),
  • Leerlauf ohne Verbindung,
  • Quasi-Kurzschluss bei Verbindung (z.B. Tasterbetätigung)
  • Eingangs-Pin zieht durch positive Ladung (Referenzwert Pluspol) hinter diesem Elektronen an, sodass Signal anhand der Potentialdifferenz zwischen Pluspol und Eingangssignal als z.B. 1/0 bewertet werden kann

Ich verstehe nicht, weshalb ein durch ein EMF-Signal zur Bewegung angeregtes Elektron z.B. am Knotenpunkt zwischen Eingang und Pullup-Widerstand nicht durch den Eingangs-Pin zum Pluspol gelangt, sondern nur den Weg mit einem hohem Pullup/Pulldown-Widerstand wählt.

Betrachte ich den Mikrocontroller als Widerstand, der z.B. parallel zu einem Pullup-Widerstand geschaltet ist verstehe ich nicht weshalb durch den Mikrocontroller kein Strom fließen sollte. Zusammen mit einem Pullup-Widerstand scheint ein Eingang für mich einen Spannungsteiler zu ergeben.

Ich verstehe nicht wieso ein Widerstand Elektronen "ziehen" kann, wo Elektronen doch für gewöhnlich den Weg des geringsten Widerstands entlangfließen.

Im Bild habe ich eingezeichnet, wie ich meinem Verständnis nach schlussfolgerte, wenn ich nicht wüsste, dass mir eine Information fehlt, da es Videos ein anderes Resultat präsentieren.

Bild zum Beitrag
Batterie, Elektrik, Elektrizität, Schaltung, Widerstand

Meistgelesene Beiträge zum Thema Widerstand