Warum beweist Cantors Diagonalargument die nicht vorhandene Bijektion?

Georg Cantor hat bewiesen, dass die Menge der reellen Zahlen im Intervall [0;1] nicht bijektiv zur Menge aller natürlichen Zahlen ist. Dies tat er durch sein Diagonalargument. (Ich weiß grad nicht mehr, ob das erste oder zweite.)

Aaaaber ich verstehe nicht, warum keine Bijektion herrscht, nur weil die Liste nie vollständig ist. Denn lediglich das zeigt Cantors Argument.

Eine Liste von unendlichen Zahlen, ist ja sowieso niemals vollständig.

Nur weil bewiesen werden kann, dass die Liste nicht vollständig ist, heißt das nicht, dass es keine eineindeutige Zuordnung der Elemente geben kann. Oder etwa doch? Aber warum?!

Bei den geraden Zahlen geht das ja auch, obwohl man immer wieder eine neue Zahl erschaffen kann. (Die letzte +2)

Warum darf er überhaupt seine These auf unendlich lange Zahlen machen? Man kann doch nicht alles einfach in die Unendlichkeit übertragen. Sein Argument ergibt ja einigermaßen Sinn, aber doch nicht für unendlich lange Zahlen, die ja aber damit erschaffen werden!

Ich verstehe echt nicht den Zusammenhang zwischen einer immer unvollständigen Liste einer Menge und ihrer Bijektion und warum sein Argument für unendliche Längen überhaupt erlaubt ist.

rechnen, Zahlen, Funktion, Algebra, Gleichungen, höhere Mathematik, lineare Algebra, Logik, Mathematiker, Pi, Unendlichkeit, Mengenlehre, Beweis, Funktionsgleichung, Grenzwert, komplexe Zahlen, reelle Zahlen, Analysis

Meistgelesene Beiträge zum Thema Funktion