Quantenphysik/ Photonen / Photoeffekt?

Quantenphysik

Ich stehe vor folgender Aufgabe. Bei der b habe ich gar keine Idee. Ansonsten habe ich die Aufgaben gelöst, allerdings weiß ich nicht, ob sie stimmen

Aufgabe: UV-Licht der Wellenlänge λ=300 nm tri􏰃 auf eine Cäsiumschicht, deren Fläche A=1cm2 beträgt. Die Stärke der Bestrahlung beträgt 2,0 W/cmhoch2.

a) Berechnen Sie die Energie eines Photons.

Hier habe ich Eph= 6,62 *10hoch-19 J raus

b) Bestimmen Sie die Anzahl der Photonen, die jede Sekunde auf die bestrahlte Fläche auftreffen.

Hier habe ich erhlichgesagt keinen Ansatz . Eine Erkläreung mit Formel wäre sehr hilfreich. Ich bitte um einen verständlichen Rechenweg Danke:)

c) Berechnen Sie die maximale kinetsche Energie, die ein durch die Strahlung herausgelöstes Elektron besitzt. Geben Sie die Energie in J und in eV an.

also ich weiß, dass Ekin= h*f - Wa (Wa ist die Ausstritsarbeit und also fg*h)

da es sich um Cäsium handelt ist Wa ja bekannt (1,9eV Formelsammlung) und die Energie des Photons habe ich in Aufgabenteil a) bereits emittelt

Meine Rechnung : Ekin= 6,62*10hoch-19 J -1,9eV = 3,576*10hoch Minus 19 Joule.

ist das richtig?

d) Ermitteln Sie die maximale Gegenspannung, die das Elektron überwinden könnte.

Wahrscheinlich stimmt es nicht. Mein Ansatz: ich weiß aus c) die maximale kinetische Energie meines Photons (fall c stimmt)

Ekin= e* U EkinMAX= ->= 3,576*10hoch Minus 19 Joule. U= EkinMax/e =2,232 Volt ist das richtig?

Energie, Licht, Spannung, Formel, kinetische Energie, Physik, Physiker, Quantenphysik, Volt, Elektronen, Photoeffekt, Photonen, Wellenlänge
Wie funkieren Infrarot Filter durch Absorption?

Wenn IR Strahlung durch die Moleküle in einem solchen Filter absorbiert wurde, dann wird die Energie in Thermische Energie umgewandelt. Gleichzeitig wird im thermischen Gleichgewicht nun Schwarzkörperstrahlung abgegeben, die größtenteils bei Raumtemperatur im IR Bereich liegt.

Wie also kann zB. ein IR Absorptionsfilter in einer Brille das Auge schützen, wenn der Filter die IR Strahlung direkt wieder selber emittiert?

Praktisch kann ich mir bloß vorstellen, dass die Thermische Energie statt durch Wärmestrahlung schneller durch Konvektion und Wärmeleitung in die umgebende Luft abgegeben wird.

Follow up Frage:

Generell hinterfrage ich momentan auch den Unterschied zwischen Absorbern und Reflektoren auf der Wechselwirkungsebene zwischen Licht und Materie:

  • Ein Absorber kann durch seine spezifischen Eigenschaften Photonen bestimmter Energien absorbieren, was zu einem zu Temperaturerhöhung führt (Translation, Rotation, Vibration) und bei Passender Energie zu angeregten Elektronenzuständen. Die thermische Energie wird durch schwarzkörperstrahlung abgegeben, die angeregten Elektronenzustände fallen wieder zurück und emittieren ein Photon mit gleicher Energie?
  • Bei einem Reflektor bin ich mir noch unsicherer, manche behaupten, dass ein Reflektor direkt so absorbiert, dass nichts in thermische Energie umgewandelt wird, sondern direkt ein Elektron angeregt wird und durch das sofortige zurückfallen ein Photon mit gleicher Energie emittiert wird (zum Beispiel durch verbotene energiezustände im Energieband von Kristallstrukturen). Doch das erklärt beispielsweise nicht, warum beim zurückfallen in den Grundzustand ein Photon in die Richtung emittiert wird, die dem Reflektionsgesetz folgt. Andere behaupten, dass bei Betrachtung von reflektionserscheinungen besser die Wellenvorstellung benutzt werden sollte und beim reflektieren nichts absorbiert und wieder emittiert wird, in dem Sinne wäre ein Absorber ja eigentlich dann auch bloß ein Reflektor.
Energie, Chemie, Licht, Wärme, Astrophysik, Atom, Atomphysik, Formel, Lichtgeschwindigkeit, Physik, Physiker, Quantenmechanik, Quantenphysik, Relativitätstheorie, Thermodynamik, Elektromagnetismus, Elektronen, Photonen, Wellenlänge

Meistgelesene Fragen zum Thema Elektronen