Äußere direkte Summen und Produkte?

Hallo!

Folgende Definition wird mir nicht 100%ig klar:

[Definition: Sei V eine Menge, dann nenne ich |V| die Anzahl der Elemente in V]

So ich hab das Produkt der Vektorräume V_i schon fasst verstanden... denke ich... Ich nehme jeweils aus jedem dieser Vektorräume V_i ein Element bzw. ein Vektor raus. dann habe ich |I| viele Vektoren, welche ich alle zusammen fasse in eine Familie. Das mach ich dann |V_i| mal würde ich sagen und habe dann eben |V_i| Familien, welche eben dann das Produkt der Vektorräume V_i bilden. Ist da soweit richtig verstanden worden? Was passiert, wenn die V_i untereinander nicht gleichmächtig sind? Muss nicht noch bedingt sein, dass die V_i untereinander jeweils isomorph zueinander sind?

Als Beispiel nehme ich mal die reellen Zahlen R=V_1=V_2=...=V_(p-1) mit p<oo und irgendeinen endlichen Körper, ich nenne ihn mal W und nehme W^3:=V_p mit |W|<p. Jetzt nehme ich für das Beispiel eine Indexmenge I=1,...,p, also |I|=p. Was nun? Bilde ich nun das Produkt dieser drei Vektorräume, gehen mir doch irgendwann die Vektoren aus V_p aus... Nun gibt es für mich drei Möglichkeiten:

1und2) Es gibt ein P aus I mit P<p oder genauer sogar P=|W|, sodass ab diesem P (bzw. sodass für alle i aus I mit i>P)...

a) ... die Familien nur noch aus p-1 Vektoren gebildet werden. (also keine mehr aus W^3=V_p)

b) ... keine Familien mehr gebildet werden. Also nicht alle Elemente der Vektorräume V_1,...,V_p für die "Familienbildung" genutzt werden.

3) Ich liege komplett falsch und habe alles falsch verstanden. Kann sehr gut passieren....

Wäre super, wenn jemand mich etwas aufklären könnte. Ich verstehe eben nicht ganz genau, was passiert, wenn die Vektorräume, dessen Produkt ich hier bilden will, nicht die gleiche Anzahl an Elementen haben. Bzw. was genau passiert, wenn einer dieser Vektorräume eine kleiner Anzahl an Elementen hat, als die Anzahl an Vektorräumen von welchen wir das Produkt bilden wollen.

VIELEN DANK UND LIEBE GRÜßE!

Bild zum Beitrag
Schule, Mathematik, rechnen, lineare Algebra, Vektoren, Vektorraum, Analysis
Halboffenes Intervall offen oder nicht?

Guten Tag!

Sei A=(a,b] das halboffene reelle Intervall mit a<b, in welchem das a aber nicht das b enthalten ist. Jetzt frage ich mich, ob dieses Intervall als offene oder abgeschlossene Teilmenge der Reellen Zahlen eingestuft werden kann. Für abgeschlossen habe ich eine Begründung und für offen auch. Nur bei offen bin ich mir nicht ganz sicher ob das so hin haut, wie ich mir das denke.

Also. Zunächst sei Br(x) eine offene Umgebung um x mit dem Radius r>0. Dann ist eine Teilmenge V eines Metrischen Raumes X offen, wenn für alle x0 aus X gilt, dass ein r existiert, sodass Br(x0) Teilmenge von V ist. Dies ist hier ja offensichtlich nicht der Fall. Wenn ich nun b=x0 wähle, ist für jedes r>0 die Umgebung Br(b) nicht Teilmenge von A=(0,1]. Somit müsste A ja abgeschlossen sein, denn wenn sie nicht offen ist muss sie ja abgeschlossen sein. ABER: In meinem Skript steht als Definition:

  1. Eine Teilmenge V von X heißt offen, wenn [...] gilt.
  2. Eine Teilmenge W von X heißt abgeschlossen, wenn X\W offen ist (X\W ist das Komplement von W)

Wähle ich nun als unseren Metrischen raum das reelle Intervall B=[a-1,b] ist A Teilmenge davon. Nun folgende Argumentation:

B\A=[a-1,a] ist offensichtlich abgeschlossen. Daraus folgt laut des zweiten Teils der Definition, dass A offen ist.

Ich habe gelernt, dass die leere Menge und R selber offen und abgeschlossen zugleich sind, jedoch nicht, dass gleiches für Halboffene Intervalle gilt.

Aufklärungsbedarf! Ich würde mich über eine kurze Antwort auf die Frage im Titel und eine kurze Begründung freuen! Hinweise auf Fehler in meiner Argumentation würden ich auch begrüßen

Danke und LG

Max Stuthmann

Schule, Mathematik, Menge, Universität, Mengenlehre, Topologie, Analysis, unimathe

Meistgelesene Beiträge zum Thema Analysis