Warum beweist Cantors Diagonalargument die nicht vorhandene Bijektion?

Georg Cantor hat bewiesen, dass die Menge der reellen Zahlen im Intervall [0;1] nicht bijektiv zur Menge aller natürlichen Zahlen ist. Dies tat er durch sein Diagonalargument. (Ich weiß grad nicht mehr, ob das erste oder zweite.)

Aaaaber ich verstehe nicht, warum keine Bijektion herrscht, nur weil die Liste nie vollständig ist. Denn lediglich das zeigt Cantors Argument.

Eine Liste von unendlichen Zahlen, ist ja sowieso niemals vollständig.

Nur weil bewiesen werden kann, dass die Liste nicht vollständig ist, heißt das nicht, dass es keine eineindeutige Zuordnung der Elemente geben kann. Oder etwa doch? Aber warum?!

Bei den geraden Zahlen geht das ja auch, obwohl man immer wieder eine neue Zahl erschaffen kann. (Die letzte +2)

Warum darf er überhaupt seine These auf unendlich lange Zahlen machen? Man kann doch nicht alles einfach in die Unendlichkeit übertragen. Sein Argument ergibt ja einigermaßen Sinn, aber doch nicht für unendlich lange Zahlen, die ja aber damit erschaffen werden!

Ich verstehe echt nicht den Zusammenhang zwischen einer immer unvollständigen Liste einer Menge und ihrer Bijektion und warum sein Argument für unendliche Längen überhaupt erlaubt ist.

rechnen, Zahlen, Funktion, Algebra, Gleichungen, höhere Mathematik, lineare Algebra, Logik, Mathematiker, Pi, Unendlichkeit, Mengenlehre, Beweis, Funktionsgleichung, Grenzwert, komplexe Zahlen, reelle Zahlen, Analysis
Wieso ist die Wurzel aus 2 irrational?

Ich habe gerade ein kleines mathematisches Problem und finde meinen Fehler einfach nicht. Deshalb wäre ich dankbar, wenn mir jemand sagen könnte, was an meinen Überlegungen falsch ist.

  1. Die rationalen Zahlen sind definiert als die Menge der Zahlen, die sich durch Brüche aus ganzen Zahlen darstellen lassen.
  2. Die Wurzel aus 2 - um ein Beispiel zu nennen - ist irrational. Aber ich kann die Wurzel aus 2 durchaus als Bruch darstellen. Beispielsweise mit dem Nenner 1.
  3. Diese Darstellung entspricht nicht der Definition von rationalen Zahlen, denn im Zähler befindet sich ein Komma, also keine ganze Zahl.
  4. Ich erweitere den Bruch nun mit 10. So verschiebt sich das Komma um eine Stelle.
  5. Diese Darstellung entspricht nicht der Definition von rationalen Zahlen, denn im Zähler befindet sich ein Komma, also keine ganze Zahl.
  6. Die Definition einer rationalen Zahl sagt aber nicht aus, dass die ganzen Zahlen in Nenner und Zähler endlich sein müssen. Ich kann den Bruch also doch einfach unendlich oft mit 10 erweitern.

Das entspricht doch dann letztendlich einem Bruch, der sowohl im Nenner, als auch im Zähler eine unendlich große ganze Zahl hat.

Wenn ich aber nun sage, seien a und b unendlich große ganze Zahlen, dann ist klar, dass a/b eine rationale Zahl ist.

Wie unterscheidet sich also nun meine Ausführungen von der Wurzel von 2 vom einfach Fall a/b?

Den einzigen Fehler, den ich erahnen könnte, ist der, dass ich selbst dann, wenn ich meinen Bruch unendlich oft erweitere, niemals eine ganze Zahl in den Nenner bekomme. Wenn ich den Bruch aber nun unendlich oft erweitere und anschließend einfach die Nachkommastellen weglassen würde, hätte ich doch einen Bruch aus ganzen Zahlen, der sich der Wurzel aus 2 unendlich genau annähert. Kann ich an der Stelle nicht behaupten, dass mein Bruch einfach gleich der Wurzel 2 ist, so wie man beispielsweise auch sagt, dass 0,99 Periode gleich 1 ist? Und müsste daraus dann nicht folgen, dass die Wurzel aus zwei eine rationale Zahl ist, da es eine rationale Zahl (meinen Bruch) gibt, die sich der Wurzel aus 2 unendlich genau annähert.

Zahlen, Unendlichkeit, Mengenlehre, Zahlenmengen

Meistgelesene Beiträge zum Thema Mengenlehre