Vektor?


01.05.2023, 15:33

Die Länge des Schattens des fahnenmastes auf dem Boden hab ich raus es müsste 10 Meter sein

3 Antworten

Von Experte Willy1729 bestätigt

So sieht das ganze aus:

Bild zum Beitrag

Die Sonnenstrahlen (gelb) sind nichts weiter als eine Gerade durch die Spitze des Mastes B und dem Ende des Schattens S.

Die Spitze B liegt 10 m über Punkt A, also gilt:
B(1/-3/10)

Nun müssen wir eine Gerade durch B und S legen.

Wir können B als Stützvektor nehmen und BS als Richtungsvektor. Die Geradengleichung lautet dann:

g: x = (1/-3/10) + r(8/6/-10)

 - (Mathematik, rechnen, Funktion)

Die Mastspitze befindet sich bei

(1/-3/10)

Schatten der Mastspitze befindet sich laut Angabe bei

(9/3/0)

Somit muss der Vektor von der Mastspitze bis zu deren Schatten lauten

(9/3/0) - (1/-3/10) = (8/6/-10)

Das ist ein Vektor in Richtung der Sonnenstrahlen, wenn man will kann man diesen Vektor erweitern oder kürzen, die Richtung bleibt ja unverändert, somit erhält man z.B, wenn man durch zwei dividiert, den Vektor

(4/3/-5)

Einfach der Vektor von der Spitze des Turmes zum Punkt S. Also (S-Spitze des Turms)

Woher ich das weiß:Studium / Ausbildung – Ich studiere Mathematik im dritten Semester.