Geburtstagsproblem 3.0?

Folgende frage habe ich mir gestellt : ich nehme 5 Personen und frage nach der Wahrscheinlichkeit danach dass genau 2 an irgend einem Tag im Jahr miteinander Geburtstag haben. Dass ist ja eine abgewandelte frage vom Geburtstagsproblem.
Ich habe dazu ein baumdiagramm gezeichnet und P berechnet. Ich kam auf 2,9%. Dann habe ich noch eine andere Rechnung versucht die ich aus eine anderen frage kannte und zwar: 3651364363362/365^5 und das ganze noch multipliziert mit 5 über 2. auch hier kommt man auf das gewünschte ergebnis. Nun meine Frage: alle pfäde die die Lösung genau 2 Personen beinhalten haben ja unterschiedliche Wahrscheinlichkeiten weil die Wahrscheinlichkeit für einen gleichen Geburtstag ja mit mehr ungleichen Geburtstagen zunimmt. Nun ist es ja bspw bei der bernoullikette so, dass dieses n über k ja die Anzahl an günstigen pfäden angibt. Bei der Rechnung hier oben kann das aber nicht sein. Die 5 über 2 geben ja an wie viele Möglichkeiten es gibt dass aus den 5 Leuten genau 2 miteinander Geburtstag haben. Aber wie kann man sich diese 5 über 2 auf das baumdiagramm zu dem Versuch übertragen vorstellen? Und warum betrachtet man zur Berechnung ausgerechnet den Pfad, wo anschaulich gesagt direkt die erste Person die gefragt wird mit der beliebigen Person Geburtstag hat?

Bei nachfragen aufgrund von Unverständlichkeit einfach gerne schreiben.

Bild zum Beitrag
Mathematik, Wahrscheinlichkeitstheorie, Baumdiagramm, Paradoxon
Stimmt die Erklärung aus Schicksal ist ein mieser Verräter für Achilles und die Schildkröte?

Ich finde es ein wenig seltsam hier eine Frage zu stellen, die eine solch mathematische Bewandnis hat ... eh ... Es geht um das Buch das Schicksal ist ein mieser Verräter und das Gedankenexperiment mit Achilles und der Schildkröte. Wenn ich etwas lese, will ich es auch verstehen, also habe ich mich informiert und auch verstanden wie das Paradoxon aufgelöst werden kann ... Also, wer das Paradoxon kennt ... die Antwort ist ja, dass Achilles für diese unendliche Strecke nicht unendlich viel Zeit braucht und auch wenn unendlich viele Werte addiert werden, kommt man nicht auf einen unendlich hohen Wert. Wenn also all diese kleinen Zahlen, also die Vorsprünge der Schildkröte zusammengerechnet werden kommt man näherungsweise an den Wert – den sogenannten Grenzwert – an dem Achilles die Schildkröte einholt. Soweit ist das auch alles klar, nur in dem Buch wurde es dann so erklärt (wenn auch nur kurz und nicht sonderlich ausführlich), dass manche Unendlichkeiten größer sind als andere Unendlichkeiten. Was auch stimmt (die natürlichen Zahlen sind unendlich, aber zählbar, die reellen Zahlen sind auch unendlich, aber nicht zählbar, weshalb es mehr reelle Zahlen gibt als natürliche Zahlen), ich verstehe nur nicht wie das mit dem Gedankenexperiment von Achilles zusammen hängt ... also entweder liege ich völlig falsch und habe alles falsch verstanden (was ich nicht hoffe) oder mir entgeht einfach etwas oder im Buch steht es falsch. Ich hoffe diese Frage findet Leute, die bekloppt genug sind, sie beantworten zu können ;) Eigentlich weiß ich selbst nicht, warum es mich so interessiert, aber ich versuche es zu verstehen und verzweifle ein wenig daran.^^

Mathematik, Schildkröten, Unendlichkeit, Achilles, Gedankenexperiment, Grenzwert, John Green, Paradoxon

Meistgelesene Beiträge zum Thema Paradoxon