Ich muss eine Hausarbeit über das Thema der speziellen Kurvenanpassung durch Spline Interpolation anfertigen. Ich verstehe das Thema im Großen und Ganze, nur hätte ich zu ein paar Begriffen ein paar Verständnisfragen.
Ist ein Polynom eine Summe aus der Funkion P(x)=aix^i? Von i=0 bis n, dabei n der größtmöglichste Grad ist. Also wenn n zB 2 wäre, sähe die Funktion doch wie folgt aus: P(x)=ax²+b*x+c.
Ein Spline ist, sofern ich es richtig verstanden habe, einfach nur eine Funktion die sich, stückweise, aus den Polynomen zusammensetzt? Ist es dann eine Summe an Funktionen oder wie wird das berechnet?
Die Interpolation ist doch die Aufstellung einer Funktionsgleichung auf Grundlage von bekannten Werten? Und im Zusammenhang mit den Splines wäre eine Spline-Interpolation die Aufstellung einer Funktionsgleichung von Splines?
Bei dem kubischen Spline, denke ich, handelt es sich um einen Spline dritten Grades mit einer glatten Kurve, sodass die Funktion zweimal stetig differenzierbar ist. Also, dass die Funktion differenzierbar ist, die erste Ableitung auch differenzierbar ist und die zweite Ableitung stetig ist oder wenn die Funktion und die erste Ableitung differenzierbar und stetig sind und dazu die zweite Ableitung stetig ist oder wenn alle Funktionen stetig und differenzierbar sind, gilt die Grundfunktion als zweimal stetig differenzierbar?
Dabei denke ich handelt es sich bei der Differenzierbarkeit um eine Funktion, die sich linear approximieren kann, also man die Kurve mit Geraden (und/oder Strecken (korrigieren falls falsch)) annähernd beschreiben kann.
Bei der Stetigkeit handelt es sich, meines Wissens nach, um eine Funktion, bei der der Graph durchgängig verläuft und nirgendwo "Löcher" hat.
Ansonsten verstehe ich den Vorgang nur sollte ich die Begriffe auch erklären können.