Wie errät man die Nullstelle im Horner-Schema?
Hey wir haben in der Schule das Horner-Schema gelernt und soweit habe ich das ganze auch verstanden. Mein Problem ist nur ich verstehe einfach nicht wie man die Nullstelle errät! Könnte mir das einer mal erklären? Vielen Dank schon mal :)
4 Antworten
https://www.youtube.com/watch?v=SQx0WMkmpw8
Teiler des letzten Terms.
Hallo,
mit Hilfe einer Wertetabelle kannst Du auch merken, wo der Hase hinläuft und wo sich in etwa eine Nullstelle befinden kann.
Herzliche Grüße,
Willy
Denke an den Satz von Vietà: danach ist das konstante Glied immer das Produkt aller Lösungen! Du probierst eben der Reihe nach die Teiler durch.
Vorteil beim HORNER-Schema (neben der Ersparnis der Polynomdivision): Du erhältst mit den Fehlversuchen gleich eine - wenn auch abgespeckte - Wertetabelle!
Das hilft wirklich nur ausprobieren. Lehrer nehmen für gewöhnliche ganzzahlige Werte nahe 0, also z.B. -2 , -1 , 1, 2 etc.
Danach kannst du ja normal nach den Horner-Schema weiterverfahren, oder man nimmt die Polynomdivision.
Habe mich gerade noch einmal schlau gemacht:
Scheinbar muss man gar nicht so viel raten;
Sind alle Koeffizienten an, an-1, ... , a0 ganzzahlig, so ist jede ganzzahlige Nullstelle ein Teiler von a0.
Heißt auf Deutsch:
Wenn in deiner Funktion nur ganze Zahlen ( 1, 25, -6, -8, ...) stehen, dann sind die Nullstellen, die eine ganze Zahl sind, ein Teiler von a0.
g(x) = x³-x²-21x+45
Hier stehen nur ganze Zahlen, also gilt der Teilersatz. => mögliche Nullstellen: (-)1, (-)3, (-)5, (-)9, (-)15, (-)45 (Man kann 45 durch all diese Zahlen teilen, damit was ganzzahliges rauskommt). Jetzt musst du nur noch schauen, ob eine von denen eine Nullstelle ist.