e=mc2, warum c zum quadrat?
hey :)
ich versuch mir gerade selbst ein paar grundlagen der astronomie und physik beizubringen und bin auf die beruehmte formel e=mc quadrat gestossen (ich find auf meiner tastatur kein hoch zwei deswegen schreib ich jetzt einfach zwei aber ihr wisst was gemeint ist). ich versteh dass masse gleich energie is jedoch versteh ich nicht wieso masse mal lichtgeschwindigkeit HOCH ZWEI genommen werden muss. ich frag mich das auch bei anderen einheiten die hoch zwei beinhalten. lichtgeschwindikeit betraegt ja 299792 km/s, aber warum hoch zwei und wenn es doch eine feste zahl is, warum schreibt man dann nicht einfach das doppelte von 299792 hin? ist ja eig eine normale rechnung die ausgerechnet werden kanm, warum dann die umschreibung und wuerde es das gleiche bedeuten?
ich weiss nich ob man versteht was meine frage ist, vllt tuts ja jemand:)
10 Antworten
Hallo hi18112001,
E = m·c²
Und um gleich die erste Frage zu beantworten: Sonderzeichen wie das ² kopiere ich immer mit der Windows-Zeichentabelle in den Text. Wenn das auch einfacher geht, bin ich gerne für Tipps offen... ;-)
Dann: Vermutlich hast Du Dich verschrieben, aber c² bedeutet natürlich nicht 2·c, sondern c·c, also das Quadrat der Lichtgeschwindigkeit.
Die Frage, wenn ich sie richtig verstehe, bleibt aber dieselbe: Warum hat Einstein da c² geschrieben, was ja auch nur eine Konstante ist? Habe ich das richtig verstanden, dass Deine Frage eigentlich ist:
Warum lautet die berühmteste Formel der Welt nicht
E = m·k
mit k = Konstant = c² ??
Und das hast Du ganz richtig verstanden: Einstein hätte es auch so schreiben können. Denn im Prinzip steht das da: Energie ist so was wie Masse - multipliziert mit einer Naturkonstanten, die die passenden Einheiten mitbringt.
Der einfache Grund für diese Tatsache ist, dass - so überraschend das ist - die Formel nicht von Einstein ist. Er hat als erster ihre wahre Bedeutung verstanden. Und deshalb wird er zurecht mit ihr in Verbindung gebracht.
Aber tatsächlich ist die Formel ein halbes Jahrhundert älter.
Sie ergibt sich aus den Maxwell-Gleichungen. Das sind 4 recht komplizierte Gleichungen, die ein Herr Maxwell gefunden hat (das hast Du Dir gedacht). Diese 4 Gleichungen beschreiben die Ausbreitung elektromagnetischer Wellen und Felder im Raum.
Und in diesen Gleichungen taucht eine Konstante auf, die man mit "c" abgekürzt hat; c für englisch "constant". Sie hat die Dimension einer Geschwindigkeit. Es stellte sich heraus, dass c die Ausbreitungsgeschwindigkeit elektromagnetischer Felder im Vakuum ist.
Und deshalb, weil "c" eben eine bestimmte physikalische Bedeutung hat, hat man die Konstante nicht umbenannt, sondern das c stehen lassen und halt c² geschrieben.
c ist eine universelle Naturkonstante, wie Einstein gefunden hat. Sie hat eine unmittelbar einleuchtende Bedeutung. "c²", das ist für den Physiker intuitiv erstens eine Konstante und zweitens das Quadrat einer universellen Naturkonstante. Das durch ein nichtssagendes "k = konst" zu ersetzen, wäre also ein Rückschritt im Informationsgehalt der Gleichung. Denn dann müsste man ja erst mal den Wert der Konstanten herausfinden.
Ungefähr einleuchtend?
Grüße
Und
Danke für das Sternchen!!
Ich freu' mich, wenn es das war, was Du wissen wolltest.
=D
E=mc^2 ist eine Formel der Physik und beschreibt, wie andere Formeln auch physikalische Gesetze. Bei physikalischen Gleichungen müssen links und recht immer Ausdrücke mit der gleichen physikalischen Dimension stehen. Beispiel die kinetische Energie wird in der Mechanik beschrieben mit E=1/2*m*v^2 = 1/2*m*v*v. Deshalb muss auch in der Relativitätstheorie eine Formel für eine Energie das Quadrat einer Geschwindigkeit enthalten, also hier c * c = c^2 (ist nicht dasselbe wie 2 * c - soviel Mathematik ist Voraussetzung, ehe man Physik betreibt!). Die Formel E= m * 2 * c ist physikalisch falsch, weil m * c keine Energie ist, und weil in der Physik c die Lichtgeschwindigkeit mit der Dimension[s / t] ist.
Hey. Also E= m*C² bedeutet, die Masse mit dem Quadrat der Lichtgeschwindigkeit zu multiplizieren. C = Geschwindigkeit und die beträgt 299792458 m². Da sich das Licht nach allen Seiten gleich schnell bewegt rechnet man das ganze ins Quadrat. Also wie in dem Fall m².
E=mc²
Zuerst einmal zur Schreibweise:
das ² steht bei mir auf der Tastatur. Und zwar rechts auf der Taste neben der 2.
Du kannst es schreiben, indem Du die 2 und ALTGR gleichzeitig drückst.
Stell Dir einmal vor, Dir würde jemand eine Kugel an den Kopf werfen.
Eine Bowlingkugel wäre wohl schlimmer als ein Tennisball.
Und zwar deshalb, weil sie mehr Energie auf Deinen Schädel überträgt.
Also ist die Energie eines Körpers umso größer, je größer seine Masse ist, deshalb E (Energie) = m (Masse) x irgendwas.
c² kann man sich auch vorstellen als s/t² x s.
s/t ist eine Geschwindigkeit, deshalb ist s/t², also s/t x 1/t eine Beschleunigung.
Wenn Du nun von einem Tennisball getroffen wirst, der sich sehr schnell bewegt, kann es sein, dass der Schaden größer ist, als bei einer Bowlingkugel, die sich sehr langsam bewegt.
Also ist die Energie auch umso größer, je schneller sich die Kugel bewegt, deshalb:
E = m x (s/t)(Geschwindigkeit) x irgendwas.
Wovon hängt nun die Geschwindigkeit der Kugel ab?
Die Geschwindigkeit der Kugel ist umso höher, je stärker man sie beschleunigt.
Die Beschleunigung ist wiederum umso größer, je kürzer die Zeit ist, in der man die Kugel auf Geschwindigkeit bringt.
Deshalb gilt:
Beschleunigung = s/t (Geschwindigkeit) x 1/t.
Die Geschwindigkeit der Kugel ist aber nicht nur von der Höhe der Beschleunigung abhängig, sondern auch davon, über welche Strecke die Beschleunigung durchgeführt wird.
Das kann man sich leicht an einem Flugzeug klarmachen.
Je weiter es gerollt ist, also je größer die Strecke ist, desto schneller ist es.
Deshalb wird ein an den Kopf geworfener Ball um so mehr Energie haben, je stärker derjenige ist, der geworfen hat (Beschleunigung) und je weiter er ausgeholt hat (Strecke).
Deshalb gilt:
E = m(Masse) x s/t² (Beschleunigung) x s(Strecke)
Das kann man umformen zu:
E = m x s²/t² oder E = m x (s/t)²:
Wie schon erwähnt, ist s/t eine Geschwindigkeit, in diesem Falle die Lichtgeschwindigkeit c.
Deshalb ist E = m x c²
Weil solche Formeln 1. nicht einfach zusammengeschustert werden und 2. Weil die Einheiten sonst ja garnicht stimmen.
In der klassischen Mechanik ist v² eben gerade das Gravitationspotential, dass die Masse m durchlaufen hat und damit die Energie E erhielt.
Am besten ist es, du fängst mit ganz einfachen Grundlagen von Newton an, sonst verstehst du es nie.
Die hochgestellte ² kannst du auch einfacher haben:
Taste AltGr und die 2 --> ²
Taste AltGr und die 3 --> ³
mehr geht aber nicht ohne Unicode ;-)
Eine schönen Sonntag Abend. Roderic.