Differentialgleichung - Wie lösen?

3 Antworten

Es wäre natürlich hilfreich, wenn wir wüssten, welche Gedanken du dir gemacht hast. Ohne diese Information können wir ja nur allgemein die Lösung erläutern, was wesentlich mehr Aufwand bedeutet und dir weniger nutzt.

Ich beginne trotzdem mal ganz allgemein. Ich nehme an du weißt, was eine Differentialgleichung ist? Aufgabenteil (a) ergibt sich nämlich mit Newton sehr einfach:

F = ma = m dv/dt ---> m dv/dt = -k v

besser geschrieben:

dv/dt = -k/m v

Für Aufgabenteil (b) musst du diese Gleichung lösen, was noch einigermaßen gut funktionier, da es eine homogene Differentialgleichung ist:

dv = -k/m v dt --> 1/v dv = -k/m dt

Dies ergibt durch Integration:

ln(v/v0) = -k/m t --> v(t) = v0*exp(-k/m*t)

Es handelt sich also um eine Exponentialfunktion. v0 erhältst du über Randbedingungen (Geschwindigkeit bei t = 0).

Alternativ kann man die Differentialgleichung auch lösen indem man direkt den Ansatz v(t) = A*exp(b*t) verwendet und dann die Parameter bestimmt (vielleicht bist du diesen Lösungsweg eher gewöhnt).

Die allgemeine Lösung ist natürlich auch eine spezielle Lösung aber eine wirklich sinnvolle spezielle Lösung gibt es (nach meinem Wissen) nur bei inhomogenen Differentialgleichungen.

Auf s(t) kommst du dirch Integration von v(t) (das ist einfach Kinematik):

s(t) = Integral(v0*exp(-k/m*t)dt) = C - v0*m/k*exp(-k/m*t)

Man kann sich leicht vergewissern, dass eine Ableitung dieser Größe wieder zu v(t) führt. Mit der Randbedingung s(t = 0) = s0 kommt man auf:

s0 = C - v0*m/k --> C = s0 + v0m/k

Was für s0 = 0 zur folgenden Lösung führt:

s(t) = v0m/k(1-exp(-k/m*t))

Für t --> ∞ erhält man als maximale Eindringtiefe:

s(∞) = v0m/k

Das erscheint auch sinnvoll. Je schneller und schwerer die Kugel (größerer Impuls), desto Dicker muss die Weste sein und gleichzeitig, je größer die Abbremsung k, desto dünner darf sie sein.

Sag bescheid, an welcher Stelle du hier noch Probele hast, ich bin gerne bereit das noch weiter zu erläutern ;)

Woher ich das weiß:Studium / Ausbildung

Schwaaarz  06.09.2018, 13:31

In der Zeile:

ln(v/v0) = -k/m t --> v(t) = v0*exp(-k/m*t)

Wie kommst du da auf ln(v/v0)? Ist das Integral von dv/v nicht nur ln(v)?

Astrobiophys  06.09.2018, 13:37
@Schwaaarz

Danke für die Anmerkung, man übergeht etwas in der Art so schnell, wenn man entsprechende Aufgabentypen zu häufig gerechnet hat. Es ist immer gut wieder darauf hingewiesen zu werden, wenn man Zwischenschritte überspringt. Meine Studis werden dir danken.

Dafür gibt es zwei möglich Erklärungsansätze. Einmal könnte ich sagen, dass ich die Integrationsgrenzen v0 und v verwendet habe (also Geschwindigkeit zu Beginn und zum Zeitpunkt t). Das Ergebnis wäre dann:

ln(v)-ln(v0)

Was mit etwas Logarithmus-Gesetzen sofort ln(v/v0) ergibt. Vielleicht ist der Ansatz:

ln(v) + C

Mit der Integrationskonstante C aber erhellender. Man hätte dann die Gleichung:

ln(v) = -C + -k/mt --> v(t) = exp(-C)*exp(-k/mt)

Mit der Randbedingung v(0) = v0 kommt man dann leicht auf exp(-C) = v0 bzw. C = -ln(v0).

Wie schon erwähnt, können die Variablen separiert werden:

m dv/dt + kv = 0

m dv/v = -k dt

Das kann direkt integriert werden. Siehe Astrobiophys. Dem ist nichts hinzuzufügen ;-)

Woher ich das weiß:Studium / Ausbildung – Studium technische Physik, promoviert in Festkörperphysik

Du musst verwenden, dass Kraft = Masse * Beschleunigung und dass Beschleunigung die Ableitung der Geschwindigkeit ist.

Weißt du denn erstmal was eine DGL ist und wie man sie lösen kann?


stagek 
Beitragsersteller
 06.09.2018, 12:50

Ja weiß ich, ich weiß auch wie prinzipiell das Ganze aufzustellen ist. Nur wie lautet die konkrete Lösung für a) ?

YStoll  06.09.2018, 12:50
@stagek

Naja, Kraft = Masse * Beschleunigung, also Fr = m * a(t) =m * v'(t)

Außerdem weißt du, dass Fr = −k * v(t).

Damit lässt sich was machen.

stagek 
Beitragsersteller
 06.09.2018, 12:53
@YStoll

Danke! Ist schonmal eine riesen Hilfe!

YStoll  06.09.2018, 12:55
@stagek

Kannst gerne deine Lösung hier posten, dann kann ich nach Fehlern gucken oder sagen ob alles richtig ist.