Warum kann eine Funktion dritten Grades nur 2 extremstellen haben?

6 Antworten

Eine Funktion n-ten Grades hat maximal n Nullstellen, die Ableitung einer Funktion n-ten Grades ist immer eine Funktion (n-1)-ten Grades.

Und die Extremstellen einer Polynomfunktion entsprechen den Nullstellen der Ableitungsfunktion.

Daraus folgt, dass die Ableitungsfunktion genau mindestens eine Nullstelle weniger   hat als die Polynomfunktion maximal haben kann.

Eine Funktion n-ten Grades hat maximal n Nullstellen, eine Funktion (n-1)-ten Grades hat maximal n-1 Nullstellen.

Somit hat die Ableitung maximal n-1 Nullstellen und somit hat die Polynomfunktion maximal n-1 Extrempunkte. ;-))

Ich hoffe, ich konnte dir helfen; wenn du noch Fragen hast, kommentiere einfach. 

LG Willibergi 


Intacc 
Beitragsersteller
 30.08.2016, 15:50

Danke, hat geholfen!

Intacc 
Beitragsersteller
 30.08.2016, 16:26

Okay, gut, vielen Dank

Intacc 
Beitragsersteller
 30.08.2016, 15:51

Heißt x^5 mal xyz könnte nur 4 extremstellen haben?

Willibergi  30.08.2016, 15:56
@Intacc

Du meinst f(x) = x⁵ * xyz?

Das wäre gleich x⁶ * yz und die Anzahl der Nullstellen und Extrempunkte ist dann von den Koeffizienten y und z abhängig.

Wenn beispielsweise y = x⁸ und z = x⁴, dann hat die Funktion mehr als 4 Extremstellen.

Die Funktion g(x) = x⁵ hat aber 4 Extremstellen. ;)

LG Willibergi

Funktionen dritten grades haben höchstens einen Term x^3. Höhere Potenzen von x gibt es nicht

Extremstellen findet man durch Ableitung. Leitet man eine  x^3 Funktion ab, erhält man eine x^2 Funktion. Also eine Funktion zweiten grades.

x^2 Funktionen sind Parabeln. Extremstellen sind die Nullstellen der Ableitung. Parabeln scheiden die x Achse nur an maximal zwei Punkten. Also hat eine Fukntion dritten Grades nur max. Zwei Extremstellen.

Grüße

Lumi


Intacc 
Beitragsersteller
 30.08.2016, 15:39

Hat geholfen, danke

Eine Funktion n-ten Grades hat max. n Nullstellen (f(x)=0); also eine Gerade max. 1; eine Parabel max. 2 Nullstellen, usw.

Um die Extremstellen ermitteln zu können, benötigst Du die 1. Ableitung (f'(x)=0), und da diese "Ableitungsfunktion" aufgrund der Potenzregel um einen Grad niedriger ist, hat sie auch eine Lösung weniger.

(Wendepunkte gibt es dementsprechend 2 weniger als Nullstellen bzw. eine weniger als Extremstellen, da f''(x)=0 erfüllt sein muß, und die 2. Ableitung ist noch ein Grad niedriger.)

Der Grad einer Funktion wird immer bestimmt von der höchsten Potenz in der Gleichung.

f(x) = x⁴                   Gleichung 4. Grades
f(x) = 1 + x³ + x⁷      Gleichung 7. Grades, egal wo die höchste Potenz steht
f(x) = (x - 1) (x + 1)  Gleichung 2. Grades, wenn man ausmultipliziert hat

Eine Funktion 3. Grades hat eine Ableitung von Grad 2 wegen f '(a x³) = 3a x²
Eine quadratische Funktion geht maximal zweimal durch die x-Achse, deshalb maximal 2 Extremstellen für die Originalfunktion.

Woher ich das weiß:eigene Erfahrung – Unterricht - ohne Schulbetrieb

Extremstellen einer Funktion liegen dort, wo die 1-te Ableitung dieser Funktion Nullstellen hat.

Ein Polynom n-ten Grades hat maximal n Nullstellen.

Wenn eine Funktion ein Polynom dritten Grades ist, dann ist ihre erste Ableitung ein Polynom zweiten Grades und kann demnach nur 2 Nullstellen haben, was für die Funktion von der die 1-te Ableitung gebildet wurde bedeutet, dass sie nur maximal 2 Extremstellen haben kann.