Matheaufgabe: Wahrscheinlichkeitsrechnung, Binomialverteilung?

2 Antworten

Naja das Gegenteil von mindestens 50% ist höchstens 49%, also

1- P(X <= 0,49n) = 0,05

bzw. mit Taschenrechnerbefehl

1 - binomialcd(0,49*x, x, 0.25)


preguntaqu 
Beitragsersteller
 10.10.2018, 19:09

Klingt logisch, aber wenn ich das so eingebe wir überall ERROR angezeigt.

Blvck  10.10.2018, 19:16
@preguntaqu

hm ich kenne deinen Taschenrechner nicht, aber bei mir ist der Befehl so aufgebaut, dass man erst n (bzw. hier x) eingibt, dann die Wahrscheinlichkeit und dann die Grenzen (die 0 kann man dabei weglassen). Bei deinem scheint das aber andersherum zu sein, deswegen hab ich die Reihenfolge aus der Fragestellung übernommen.

Ich hab das aber bei meinem Taschenrechner ausprobiert und da funktioniert es und er zeigt bei 9 eine Wahrscheinlichkeit von 0,0489 an

preguntaqu 
Beitragsersteller
 10.10.2018, 19:22
@Blvck

Also bei meinem muss man (r,n,p) eingeben, also habe ich für r=0,49*X, für n=X und für p=0.25 eingegeben.

Blvck  10.10.2018, 19:27
@preguntaqu

oh warte, du musst bei 0,49 statt des Kommas einen Punkt setzen, also 0.49 😅

preguntaqu 
Beitragsersteller
 10.10.2018, 19:28
@Blvck

Oh ja, sorry. So hatte ich das auch im Taschenrechner eingegeben :D

Blvck  10.10.2018, 19:30
@preguntaqu

und es funktioniert trotzdem nicht? komisch 🤔 funktioniert es wenn du 1 - weglässt und dann einfach guckst, wann es bei 0,95 ist?

preguntaqu 
Beitragsersteller
 10.10.2018, 19:56
@Blvck

Könnte das daran liegen, dass r dadurch, dass es mit 0.49 multipliziert wird zu einer Dezimalzahl wird und das nur mit ganzen Zahlen für r funktioniert, denn es gibt ja nur 2 oder 3 Versuche und nicht 2,5 ? Und hättest du eine Idee wie man das dann anders berechnen könnte, wenn es so mit dem Taschenrechner nicht funktioniert? :)

Blvck  10.10.2018, 20:09
@preguntaqu

hm ja, das ist gut möglich. Mein Taschenrechner rundet dann wahrscheinlich oder so

außer ausprobieren fällt mir leider nichts ein, aber bis 9 ist es zum Glück ja nicht so viel

preguntaqu 
Beitragsersteller
 10.10.2018, 20:14
@Blvck

okay alles klar, dann trotzdem dankeschön :)

Hallo,

mindestens 50 % ist das Gegenereignis von höchstens unter der Hälfte.

Du gehst in die kumulierte Binomialverteilung und probierst Kombinationen aus, bei denen k um 1 niedriger ist als die Hälfte von n.

Dieser Wert muß dann auf über 0,95 steigen, weil es höchstens 5 % Wahrscheinlichkeit für das Ereignis: Mindestens 50 % Treffer sein dürfen.

Bei der Kombination k=4, n=9 und p=0,25 kommst Du auf eine Wahrscheinlichkeit von 0,951.

Das bedeutet: Bei einer üblichen Trefferquote von 0,25 liegt die Wahrscheinlichkeit, daß weniger als die Hälfte der Würfe Treffer sind, bei etwas über 95 %.

Das bedeutet im Gegenschluß: Die Wahrscheinlichkeit für alle übrigen Ereignisse:

Mindestens die Hälfte der Würfe trifft, sinkt unter 5 %.

Das ist genau das, was gesucht wurde.

Herzliche Grüße,

Willy


Willy1729  10.10.2018, 19:48

Kleine Korrektur:

Höchstens 5 % bedeutet, daß 5 % auch noch ok sind.

Der Wert für das Gegenereignis muß also größer oder gleich 0,95 sein, nicht größer.

Bei den ganzzahligen n und k, die hier nur in Frage kommen, spielt das aber keine Rolle, weil der Wert 0,95 ohnehin nicht genau getroffen wird.