Exponentialgleichung ableiten?

2 Antworten

Vom Beitragsersteller als hilfreich ausgezeichnet

Auch wenn ich nicht verstehe, wozu Du ableitest (denn die Werte, die sich dann dabei beim Einsetzen der Zeit ergeben, hätten dann die Einheit A/s - Ampere pro Sekunde), so bin beim Ergebnis bei Dir, wenn die Abnahme des Stroms zwischen den beiden gegebenen Zeitpunkten berechnet werden soll:



Vielleicht postest Du noch den Aufgabentext im Original.


usmi49 
Beitragsersteller
 09.11.2024, 01:24

For a circuit containing a capacitance C and a resistor R, the current as a function of time is given by

If io = 10A, R = 2 ohms and C = 50*10^-6 Farad, find the approximate change in the current between 2*10^-4s and 2,1*10^-4s.

1 Amper = 1coulomb/s, 1 coulpmb = 1A*s,

1 Farad = 1m^-2*Kg^-1*s^4*A^2,

1 Ohm = 1m^2*Kg*s^-3*A^-2,

usmi49 
Beitragsersteller
 09.11.2024, 01:32
@usmi49

Ich habe das Gefühl, mann kann es auf beide Arten interpretieren!?

usmi49 
Beitragsersteller
 09.11.2024, 01:39
@usmi49

Die Einheiten sind noch die alten, ausser dem Ampere, sorry.

evtldocha  09.11.2024, 11:05
@usmi49

Mit diesem Aufgabentext, kannst Du das so verstehen:

di/dt ≈ Δi/Δt → Δi = (di/dt) · Δt

Die Frage bleibt dann nur, welche der beiden Zeiten man dann in die Ableitung einsetzt, um diese Abschätzung vorzunehmen. Und dann ist in der Tat
Δi = - 0,135 A, wenn man für die Zeit, zu dem man die Ableitung berechnet, den Zeitpunkt t = 2 · 10-4 s verwendet und damit und mit Δt = 0,1·10-4 s rechnet.

usmi49 
Beitragsersteller
 09.11.2024, 11:44
@evtldocha

OK, vielen Dank, evtldocha, dann wähle ich diese Option,:)

Wechselfreund  09.11.2024, 12:31
@usmi49

"approximate change"

Könnte da nicht die Differenz der Ausgangsfunktion gemeint sein?

evtldocha  09.11.2024, 12:49
@Wechselfreund

... offensichtlich nicht, wenn die Lösung -0,135 A sagt - was ich hier auch als "sehr künstlich problematisiert" finde, zumal es zu einem ungenaueren Ergebnis führt, als eine korrekte Differenzbildung.

evtldocha  09.11.2024, 13:16
@Wechselfreund

Am Ende bleibt für mich ja nur die Frage offen, wie man unter Verwendung der Ableitung auf ein Ergebnis kommt, das der Differenzbildung entspricht (Mittelwert der Änderungen an den Zeitpunkten könnte passen)

usmi49 
Beitragsersteller
 09.11.2024, 22:22
@evtldocha

Danke, dass ihr euch Gedanken macht über diese Aufgabe.

Aber was ist nun korrekt? 0,135A wie im buch oder ein Anderes Ergebnis?

usmi49 
Beitragsersteller
 13.11.2024, 22:58
@evtldocha

Hallo evtldocha,

ok, danke, also 0,135A. :)

Ich gehe stark davon aus, du hast die Aufgabe falsch wiedergegeben. Wenn die Änderungsrate an der Stelle t=2*10^-4 gesucht ist, und das für einen diskreten Schritt von 1*10^-5 Sekunden, dann ist das Ergebnis -0,135 A...

Dann musst du nämlich di/dt an der Stelle t=2^-4 berechnen, um die Änderungsrate PRO SEKUNDE zu erhalten, und das dann mit 10^-5 s multiplizieren. Dann kommst du auf 0,135 A