An die Mathematiker: wie löse ich das ohne irgendwelche Sätze o.ä.?

5 Antworten

Rechter Berührpunkt des Kreises (4,a)

Oberer Berührpunkt des Kreises (b,4)

Berührpunkt des Kreises in der Mitte des Quadrats (2,2)

Aufgrund der Geometrie gilt a=b und der Mittelpunkt des Kreises liegt auf der Geraden y=x.

Daraus folgen die Gleichungen

(a-x)² + (4-x)² = r²

(2-x)² + (2-x)² = r²

Aus dem Gleichsetzen beider Gleichungen folgt

a = sqrt(x²-8), und für x = 4 damit a = sqrt(8)

Der Mittelpunkt (x,x) muss folgende Gleichungen erfüllen

(sqrt(8)-x)² + (4-x)² = r²

(2-x)² + (2-x)² = r²

Aus dem Gleichsetzen beider Gleichungen folgt

x = sqrt(8) und damit r = sqrt(8(3-sqrt(8)) ~ 1.1716


YaHobby 
Beitragsersteller
 26.02.2024, 10:51

wie bist du nochmal auf:

(a-x)² + (4-x)² = r²

(2-x)² + (2-x)² = r²

gekommen, also ich habe mit der sqrt(8) weitergerechnet und komme auf das ergebenis, hab den abstand zwischen den beiden berührungspunkten berechnet und das ist die hypotenuse und der radius ist 2 mal die kathete, aber wie kommt man auf dieses gleichungssystem, was genau ist x?

YaHobby 
Beitragsersteller
 26.02.2024, 09:46

Vielen dank kriegst den stern, so wollte ich es haben

Rechnung wie folgt.



Radius wäre 1,172


Rammstein53  26.02.2024, 09:50

Klasse, aber wie kommt man darauf?

merkurus  26.02.2024, 09:54
@Rammstein53

Ok ich gebe es zu. Ich habe es einen Video entnohmen. 😉
Nur hat der gute Mann italienisch gesprochen.
Konnte aber die Formel dann trotzdem erfassen.
Naja wurde ja inzwischen gut erklärt.

Ohne den Satz des Pythagoras gar nicht, denn der gibt dir die Länge der Diagonale des großen und des kleinen Quadrates.

Woher ich das weiß:Studium / Ausbildung – Dipl.Math.

Würde es mit einer Hypothenuse in einem rechtwinkligen Dreieck probieren. Die Werte Gast du ja schon.

Viel Erfolg ;-)

Von Experte ralphdieter bestätigt

Vielleicht hilft dir ja das hier:

Bild zum Beitrag

Ohne den Satz des Pythagoras (bzw. die Formel für die Diagonale eines Quadrates, die ja aus dem Satz des Pythagoras folgt) wird es nicht klappen.

 - (Mathematik, rechnen, Funktion)

YaHobby 
Beitragsersteller
 26.02.2024, 09:32

woher weißt du dass die hälfte der hälfte der diagonalen rechts oben genau die mitte des kreises darstellt? gibts da nen satz oder sowas?

ultrarunner  26.02.2024, 09:40
@YaHobby

Erstens ist das nicht die Hälfte der Diagonalen, und zweitens ergibt sich das aus der Anordnung des Kreises.

Dieser berührt die Seiten des äußeren Quadrates, daher sind die beiden schwarzen von mir hinzugefügten Linien jeweils gleich dem Radius des Kreises und treffen einander in dessen Mittelpunkt. Das obere kleine Quadrat hat also den Radius des Kreises als Seitenlänge, und die blaue Linie ist die Diagonale dieses Quadrates.

Die grüne Linie ist natürlich ebenfalls der Radius des Kreises.

YaHobby 
Beitragsersteller
 26.02.2024, 09:45
@ultrarunner

naja die grüne linie ist der radius und die hälfte der hälfte der gesamten diagonalen, aber du hast das nur durch geometrie gezeigt, jedoch hast du dir das nicht korrekt mathematisch hergeleitet, das ist mir zu schwammig

ultrarunner  26.02.2024, 09:50
@YaHobby

Es handelt sich um eine geometrische Angabe, wie willlst du die Aufgabe ohne Geometrie lösen? Und dann auch noch ohne "Sätze"?

Meine Zeichnung sollte eine Hilfestellung sein.

Aus der Zeichnung folgt:

a·√2 + r + r·√2 = 2a·√2

Dabei ist a die gegebene Länge (a=2).

Obige Gleichung kann man nach r umstellen und somit r berechnen.

ultrarunner  26.02.2024, 10:07
@YaHobby
naja die grüne linie ist der radius und die hälfte der hälfte der gesamten diagonalen

Nein, sie ist nicht die Hälfte der Hälfte. Die blaue Linie ist länger als die grüne.

YaHobby 
Beitragsersteller
 26.02.2024, 10:08
@ultrarunner

die treffen doch auf den mittelpunkt, aber dann hat man das gnaze trotzdem nicth gelöst

ultrarunner  26.02.2024, 10:15
@YaHobby

OK, ich gebe es auf. Ich kann dir aber versprechen, dass meine Lösung (die ich dir mittlerweile auch vorgerechnet habe) korrekt ist.

YaHobby 
Beitragsersteller
 26.02.2024, 10:20
@ultrarunner

hmm ja stimmt safe, aber ist nicht so intuitiv, ohne Veranschaulichung hättest du es ja nicht rausgekriegt, und bei komplexeren Sachverhalten kann man das nicht immer so klar zeichnen