Spezielle relativitätstheorie, unterschied t‘ und t?
Hi ich mache Gerade Übungen mit der Formel für die Zeitdilatation.
t= t‘/wurzel:1-(v/c)^2
Jedoch komme ich leider andauernd durcheinander und weiß nicht welche Zeit ich ermitteln soll. Ich weiß, dass t‘ die Eigenzeit ist, aber was bedeutet das überhaupt? Ist das die Zeit des Beobachters? Aber gleichzeitig kann man die Bewegung ja auch spiegeln bspw wenn ein zug fährt kann man ja nicht unterscheiden, ob die erde sich unter dem zug bewegt, oder der zug
Ich kann im Nachhinein natürlich herausfinden ob was sinnvolles rausgekommen ist (Bewegte Uhren gehen langsamer) aber das ist sehr ineffizient
1 Antwort
Hallo lalalakdhdhshs,
da es um Zeitspannen zwischen zwei Ereignissen Ě₁ und Ě₂ geht, würde ich statt t und t' lieber Δt = t₂ − t₁ und Δt' = t'₂ − t'₁ schreiben; Δt ist die von einem Körper B aus ermittelte, Δt' die von einem relativ zu B mit konstanter 1D-Geschwindigkeit v bewegten Körper B' aus ermittelte Zeitspanne zwischen Ě₁ und Ě₂.
Am besten kann sich B und B' als Raumfahrzeuge vorstellen, deren Antrieb ausgeschaltet ist.
Ich weiß, dass [Δt‘] die Eigenzeit ist, aber was bedeutet das überhaupt?
Wenn Δt' die Eigenzeit ist, heißt das, dass Ě₁ und Ě₂ an Bord oder ganz in der Nähe von B' stattfinden; geometrisch betrachtet liegen sie auf der Weltlinie (WL) von B'.
Dadurch müssen keine nennenswerten Verzögerungen berücksichtigt werden müssen und die Borduhr von B' die Zeiten t'₁ und t'₂ direkt messen kann. Geometrisch betrachtet ist die Eigenzeit der Abstand zwischen
Dirch die Bewegung von B' relativ zu B findet mindestens eines der beiden Ereignisse in einiger Entfernung zu B statt; dessen Zeitpunkt kann daher von B aus nur indirekt bestimmen. Von B aus sieht man Ě₁ und Ě₂ zu den Zeiten t₁ᵥ und t₂ᵥ ('v' steht für "visuell") in den Entfernungen r₁ und r₂, und es ist t₁ = t₁ᵥ − r₁⁄c und t₂ = t₂ᵥ − r₂⁄c.
Dies sind die B- Koordinatenzeiten (Zeitpunkte) der Ereignisse und ihre Differenz Δt = t₂ − t₁ die B- Koordinatenzeit (Zeitspannen) zwischen ihnen, in einem von B aus definierten Koordinatensystem Σ mit der WL von B als Zeitachse.
Aber gleichzeitig kann man die Bewegung ja auch spiegeln bspw wenn ein zug fährt kann man ja nicht unterscheiden, ob die erde sich unter dem zug bewegt, oder der zug
Richtig. Das ist der eigentliche Grund, warum die Relativitätstheorie so heißt. Sie beruht auf GALILEIs (!) Relativitätsprinzip (RP). Σ und ein von B' aus definiertes Koordinatensystem Σ', in dem sich B mit konstanter 1D-Geschwindigkeit -v (gleiches Tempo, entgegengesetzte Richtung) bewegt, sind physikalisch völlig gleichberechtigt.