ersatzwiderstand berechnen parallelschaltung?

3 Antworten

Wenn Du R1 und I1 kennst, kannst Du U (= I1 • R1) ausrechnen.

Mit diesem U und I3 kannst Du R3 (= U / I3) ausrechnen

Widerstand der Parallelschaltung:

R = R1||R2||R3 = (R1 • R2 • R3) / (R1 • R2 + R2 • R3 + R3 • R1)

oder

R = 1 / (1/R1 + 1/R2 + 1/R3)


Shalidor  12.01.2017, 16:40

Deine zweite Formel ist Bullshit. Bei deiner ersten Formel kommt ein Gesamtwiderstand von 14,834 Ohm raus. Der ist auch korrekt. Bei deiner zweiten hingegen kommt ein Gesamtwiderstand von 0,02183 Ohm raus. Das irgendwie ein wenig abgewichen.

Hkfgjklldwegn 
Beitragsersteller
 12.01.2017, 16:27

jaa danke dir :3

Naja, leichter kann man es fast nicht haben. Was ein "Ersatzwiderstand" ist weist du doch wohl, oder? Du hast hier drei Widerstände parallel geschalten. Diese zusammengefasst haben ja einen "Gesamtwiderstand". Nun könntest du ja auch einfach einen einzigen Widerstand mit genau diesem Wert nehmen. Und das ist der Ersatzwiderstand. Demnach musst du bei deiner Aufgabe lediglich den Gesamtwiderstand ausrechnen.

Da ja alle drei Widerstände parallel an die Spannungsquelle angeschlossen sind, liegt an allen drei Widerständen ja die gleiche Spannung an. Demnach kannst du diese jetzt ganz einfach ausrechnen, da du ja den Widerstand und den Strom des ersten Widerstandes gegeben hast.

R1 x I1 = U

Jetzt hast du die Spannung, die an allen Widerständen anliegt. Da du jetzt auch noch den Strom des dritten Widerstandes hast (dessen Widerstandswert dir ja noch fehlt), kannst du mit dem Ohmschen gesetz jetzt ganz einfach den dritten Wert bestimmen.

U : I3 = R3

Nun hast du alle drei Widerstände und muss sie nur noch in die Formel einsetzen, um den Gesamtwiderstand der Parallelschaltung auszurechnen.

1:Rges = 1:R1 + 1:R2 + 1:R3


Geograph  12.01.2017, 17:30

Zu Deinem Kommentar auf meine Antwort

Was unterscheidet meine Formel R = 1 / (1/R1 + 1/R2 + 1/R3)

von Deiner Formel 1:Rges = 1:R1 + 1:R2 + 1:R3

??????????????????

Shalidor  12.01.2017, 17:45
@Geograph

Hast recht, die sind gleich. Keine Ahnung was ich da vorhin gerechnet habe. Es war auf jeden Fall Bockmist. Das hier ist die richtige Rechnung:

  • R = 1 / (1/R1 + 1/R2 + 1/R3)
  • R = 1 / (1/35,5 + 1/51,1 + 1/50,83)
  • R = 1 / (0,02817 + 0,01957 + 0,0197)
  • R = 1 / 0,06744
  • R = 14,878 Ohm
Hkfgjklldwegn 
Beitragsersteller
 12.01.2017, 16:29

danke für die erklärung :3

U = I / R

1 / Rpar = 1 / R1 + 1 / R2 + ... + 1 / Rn


UlrichNagel  12.01.2017, 16:25

Hauptnenner bilden und dann den Kehrwert nehmen: Rges = R1R2R3 / (R2R3 + ......)