Dreieck konstruieren, gegeben beta=110° gamma=25° winkelhalbierende beta =3cm?

2 Antworten

Von Experte Wechselfreund bestätigt

Hallo,

der Winkel zwischen der Winkelhalbierenden von beta und der Seite a hat 110/2=55°.

Das Dreieck aus der Winkelhalbierenden, der Seite a und der Seite b von C bis zum Fußpunkt der Winkelhalbierenden hat drei Winkel, von denen zwei bekannt sind, nämlich 55° und 25°. Der fehlende Winkel hat dann 180-(55+25)=100°.

Also: Winkelhalbierende hinlegen, Schenkel mit 55°, auf dem die Seite a liegt. Vom Fußpunkt der Winkelhalbierenden einen Winkel von 110° anlegen. Schnittpunkt dieses Schenkels mit dem anderen ist Punkt C.

Punkt A ergibt sich, wenn Du von B aus in Richtung A einen Winkel von 55° anlegst.

Herzliche Grüße,

Willy


sille2712 
Beitragsersteller
 11.10.2024, 14:22

Vielen Dank für die sehr gute Erläuterung. Es hat wunderbar geklappt.

Viele Grüße

Anni

Kann's nicht selber konstruieren, aber rein mit Überlegen würde ich sagen: Du kannst doch eine Gerade zeichnen, in welcher die Seite a liegt. Dann zeichnest Du den Winkel beta ein und das Ende der Winkelhalbierenden. Dann eine Gerade mit Winkel gamma zur ersten Gerade, dann diese parallel verschieben bis zum Ende der Winkelhalbierenden.