Wie komm ich im rechtwinkligen Dreieck auf die Schenkellängen?
Ich kenne in einem rechtwinkligen Dreieck alle Winkel ( 30 , 60 , 90 ) und die Länge der längsten Seite (90 cm).
Wie errechne ich nun die Längen der beiden anderen Schenkel?
Help :(
(Ich geh nicht zur Schule, ich konstruiere einen Schnitt passend zur Stoffbreite.)
4 Antworten
Hallo,
bei den von dir genannten Winkeln ist es recht einfach.
Die kürzeste Seite ist genau halb so lang wie die längste, also 90cm:2=45cm.
Die mittlere Seite kannst du mit 0,866•90cm berechnen. Das dürfte an Genauigkeit ausreichen.
0,866•90cm=77,94cm≈78cm
🤓
Sinus und Kosinus sind Deine Freunde hier.
Die lange Kathete wäre z.B 90*sin(60°) oder 90*cos(30°) ≈ 77,9
Die kurze Kathete wäre z.B 90*sin(30°) oder 90*cos(60°) = 45
Probe Pythagoras:
kurze Seite = a, längere Seite = b, längste Seite = c.
Dann ist a = sin(30)*c und b = sin(60)*c
sin(30) = 0,5
sin(60) = 0,866
45 cm, ja? Passt mit 10 cm Luft auf den Stoff... Dem Himmel sei Dank!
Dir auch. ;)
Wo ist Sinus auf dem blöden Windows-Rechner...? :)
Sorry gefunden ächz
Im Menu "wissenschaftlich" auswählen, dann den Tab "Triginometrie" (bei mir).
Die eine Seite ist sin(30°)* 90 cm und die andere ist cos(30°) * 90 cm.
Übrigens: cos(30°) = sin (60°) falls du merkst, daß meine Antwort von anderen abweicht.
Danke. Suche verzweifelt die Sinus-Funktion auf dem virtuellen Taschenrechner lol