Schweres matherätsel hilfe?
Hallo Ich habe dieses rätsel auf gute frage gefunden. Meine Frage wäre wieso ist das Ergebnis 10990?? Ich hab den Lösungsweg leider nicht verstanden. Es wäre sehr nett wenn ihr es mir ein bisschen einfacher erklören könntet :) Danke


5 Antworten
7 Kinder = 14 Beine
49 Rucksäcke
343 Große Katzen = 1372 Beine
2401 Kleine Katzen = 9604 Beine
Katzenbeine = 10976 Beine
Gesamte Beine = 10990 Beine
würde ich bezweifeln, bei knapp 2800 Katzen, ist es ziemlich wahrscheinlich, dass mindestens eine Katze keine 4 Beine hat.
Ich denke mal 14 da ich auch mal so ein Rätsel hatte (nur im Zug) und die Antwort war 14
Der Lösungsweg ist auch Käse. Wie kommt man gleich am Anfang auf 1570*7? Da kommt man nicht drauf, wenn man die Lösung nicht kennt.
Die "Lösung" ist in Wahrheit nur eine Probe. Da hat jemand etwas heraus bekommen oder eine Lösung genannt bekommen und es wird rückwärts geprüft, ob es stimmt.
Normalerweise fängt man so an: 7 Kinder á 2 Beine ergeben 14 Beine...
Ich habe eine ähnliche Fragen noch als Fangfragen in Erinnerung, bei der man selber darauf kommen muss, dass man den Busfahrer noch einberechnen muss.
"schwer"
2*7+4*7³+4*7⁴ = 10990
knapp 20 sekunden...
7 Kinder = 14 Beine
7 Kinder * 7 Rucksäcke = 49 Rucksäcke
49 Rucksäcke * 7 große Katzen = 343 große Katzen
343 Große Katzen * 7 kleine Katzen = 2401 keine Katzen
--> (2401 * 4) + (343 * 4) + 14 = 10990 Beine
Und was ist mit den Läsuen auf den Kinderköpfen? Da kommen sicher noch ein paar Beine dazu. ;-D
bei knapp 2800 Katzen, ist es ziemlich wahrscheinlich, dass mindestens eine Katze keine 4 Beine hat.
wo wir schonmal dabei sind..
Nein, das würde der Annahme widersprechen. "Jede Katze hat vier Beine."
Es könnte aber Kinder mit einer abweichenden Anzahl an Beinen geben.
Eine weitere Spitzfindigkeit wäre, dass in der Aufgabe nicht steht, dass sich die Kitten bei den Eltern befinden und es steht dort auch nicht, ob unter den Katzen Pärchen sind, die gemeinsam Kitten haben. Es steht dort auch nicht, dass sich die Rucksäcke der Kinder im Bus befinden.
Davon steht nichts in der Aufgabe, also nein. Der Bus kann ja auch stehen und kein Busfahrer im Bus sein....