Hallo liebe Community,
ich beschäftige mich gerade mit den Pauli Matrizen und habe da ein paar Verständnisfragen.
Die Pauli Matrizen sind ja folgende:
und dazu nimmt man ja meistens noch die Matrix
.
Dabei ist dann ja
und
Es steht auf mehereren Websiten, dass die Paulimatrizen mit der Einheitsmatrix Sigma0 eine "Basis des 4-dimensionalen rellen Vektorraums aller komplexen hermiteschen 2 x 2 Matrizen" bildet und auch eine "Basis des 4-dimensionalen komplexen Vektorraums aller komplexen 2 x 2 Matrizen" bildet.
Was genau ist damit jetzt gemeint?
Also den Fakt, dass die Paulimatrizen eine Basis zu einem reellen Vektorraum und zu einem komplexen Vektorraum bilden, habe ich mir folgendermaßen erklärt: Um zu prüfen, dass etwas eine Basis ist, muss man ja schauen ob die Vektoren in B sozusagen linear unabhängig sind. (Wir gehen mal davon aus, dass die Vektorräume jeweils endlich erzeugte Vektorräume sind).
Da habe ich mir dann gedacht, dass man ja sozusagen einfach alle 4 Matrizen so umformulieren kann, dass es komplexe Zahlen sind, also einfach so:
Und da ja schon gesagt wurde, dass die eine Basis bilden, heißt, dass das die linear unabhängig sind und da jetzt alle Matrizen Element der Komplexen Zahlen 2 x 2 sind bilden sie halt eine Basis für den Vektorraum der komplexen Zahlen.
Dies macht man dann auch noch für die reellen Zahlen. Dort wandelt man die Matrix Sigma2 in eine Relle Matrix um. Man sagt einfach i = 1 und -i = -1. Und da dort dann alle Matrizen Element der Reelen Zahlen 2 x 2 sind bilden sie halt eine Basis für den Vektorraum der reellen Zahlen.
Das war ersteinmal mein Erklärversuch dafür, dass die Paulimatrizen eine Basis für den reelen Vektorraum bilden als auch für den komplexen Vektorraum. Ich würde mich sehr freuen falls mir jemand erklären könnte inwiefern mein Versuch richtig ist.
Die Grundlage meiner Idee war folgendes:
Auf jeden Fall muss es irgendwas damit zu tun haben, dass eine Komplexe Zahl so aufgebaut ist: a+b(i) mit a,b Element der Reelen Zahlen.
Meine konkreten Fragen sind also:
- Wie kann es sein, dass die Paulimatrizen eine Basis für den reellen Vektorraum bilden und eine Basis für den komplexen Vektorraum?
- Was bedeutet Zitat "die Paulimatrizen bilden eine Basis des 4-dimensionalen reellen Vektorraums aller komplexen hermiteschen 2 x 2 Matrizen"?
Ich würde mich sehr über Antworten freuen :)
Achso also bei Anwendungsaufgaben ?