Mathe: Graphen?

2 Antworten

Gäbe 2 Herangehensweisen:

Erstens: Du schaust die Steigung der Funktion f(x) an, ist sie steil oder eher nicht.

Schaust dann bei den Ableitungsgraphen, welche nichts anderes angeben als den Verlauf der Steigung des Graphen, welche am besten die Steigung des Graphen wiedergibt.

Zweistens: Die langweiligere aber einfachere Methode:

Schau dir die Extremstellen des Graphen f(x) an also Hoch und Tiefpunkt. Nachdem die Steigung an diesem Teil des Graphen Null ist, ist die Ableitung an der Stelle auch Null.

Hey

Du schaust dir immer vom Graphen F(x) die Extrema (Tiefpunkt, Hochpunkt) an und an diesen Stellen hat die Ableitung f(x) eine Nullstelle. Nun musst du schauen, woher die Ableitungsfunktion kommt und geht (von minus ins plus oder andersrum). Das kannst du entweder mit dem limes der Stammfunktion F(x) herausfinden, indem du x gegen plus und minus unendlich laufen lässt (ganz große Zahlen in die Funktion eingeben) oder du schaust dir die Stammfunktion genau an.

Nehmen wir die Stammfunktion D, siehst du, dass sie im Intervall <0 fällt und und einen TP bei (-1;1) hat. Somit steigt die Ableitungsfunktion in diesem Intervall und hat am TP eine Nullstelle, da die Ableitung hier ja 0 ist. Dann schaust du dir den nächsten Abschnitt an. Da siehst du, dass F(x) einen HP bei (1;1) hat, also hat f(x) hier wieder eine Nullstelle. Da die Stammfunktion erst fällt, dann steigt und dann wieder fällt, muss die Ableitungsfunktion zwischen den Nullstellen steigen und dann fallen (genau andersrum wie beir Stammfunktion. Also wäre die Ableitungsfunktion Nummer 2. Nach diesem Schema kannst du immer vorgehen.

Ich hoffe, mein langer Text hilft dir. Alles Gute


Neuhier05 
Beitragsersteller
 18.12.2021, 18:19

A3/B2/C4/D1? Ist das richtig?

Neuhier05 
Beitragsersteller
 18.12.2021, 18:25
@Julia1050

Hab ich gerade auch gesehen, danke dir ehrlich🥰