Lösung eines Rätsels?

Rosswurscht  02.06.2024, 20:50

Du meinst wann sie zwischen zwei und drei deckungsgleich sind?

OliviaP 
Beitragsersteller
 02.06.2024, 20:52

Ja genau

4 Antworten

Vom Beitragsersteller als hilfreich ausgezeichnet

Der Minutenzeiger schafft 6° pro Minute und der Stundenzeiger 0,5° pro Minute.

Der Minutenzeiger startet bei 0 Minuten und der Stundenzeiger bei 10 Minuten.

Damit ergibt sich folgende Gleichung mit x in Minuten:

6 * x = 0,5 * (x + 10)

6 * x = 0,5 * x + 5

5,5 * x = 5

x = 10 / 11 Minuten = 0,9090... Minuten (entspricht 54,54... Sekunden)

Zeiger Deckungsgleich um 14:10:55 Uhr.

Um 2:10 jedenfalls nicht, weil dann der Stundenzeiger nicht mehr auf der 2 steht. Also irgendwas so gegen 2:11.

Um das genauer zu berechnen würde ich 2 Gleichungen aufstellen:

  1. Minutenzeiger = 0 + x
  2. Stundenzeiger = 2 + x/12

Das ist dann ein LGS (lineares Gleichungssystem), das du lösen kannst.

In 12 Stunden überholt der Minuten- den Stundenzeiger 11 mal, also etwa alle 65,5 Minuten. Das erste Mal nach zwei Uhr passiert das um 2:11 Uhr.