Meine Frage soll genauer lauten -->
Wie verändert sich die Funktionsgleichung einer Funktion, wenn man den kompletten Graphen dieser Funktion im kartesischen Koordinatensystem um einen bestimmten, frei wählbaren Winkel, nennen wir den Winkel mal phi, im Uhrzeigersinn kippt / stürzt ?
Wie verändert sich die Funktionsgleichung einer Funktion, wenn man den kompletten Graphen dieser Funktion im kartesischen Koordinatensystem um einen bestimmten Winkel im Uhrzeigersinn kippt / stürzt ?
Nehmen wir mal die einfache Funktion y = f(x) = x ^ 2
Diese Funktion bzw. der Graph der Funktion soll nun im kartesischen Koordinatensystem komplett um dem Winkel phi = 17,5 ° im Uhrzeigersinn gekippt /gestürzt werden.
Wie lautet die neue Funktionsgleichung y = g(x) der zu kippenden Funktion y = f(x), die um einen Winkel phi im kartesischen Koordinatensystem im Uhrzeigersinn gekippt wird ?
Es soll nicht das Koordinatensystem selber gekippt werden, sondern die Funktion bzw. der Graph der Funktion im kartesischen Koordinatensystem soll gekippt werden.
Insbesondere interessiere ich mich auch für für den Fall, wie die Funktionsgleichung y = g(x) lautet, wenn man y = f(x) um 90 ° im Uhrzeigersinn kippt, der Graph wäre dann komplett auf die rechte Seite „gestürzt“, die Umkehrfunktion möchte ich dabei vermeiden wenn es geht.
Aber ich interessiere mich für den allgemeinen Fall, mit einem beliebig / frei wählbaren Kippwinkel im Uhrzeigersinn.
Wie verändert sich die Funktionsgleichung einer beliebigen Funktion y = f(x) wenn man sie kippt, wie oben beschrieben ?
Ich interessiere mich also für die veränderte Funktionsgleichung y = g(x)
Mir fielen keine besseren Worte als kippen und stürzen ein, hier mal ein Bild von einer Funktion die um 90 ° im Uhrzeigersinn gekippt wurde, damit man sieht was ich überhaupt meine, ich interessiere mich aber für einen allgemeinen Kippwinkel im Uhrzeigersinn, also nicht bloß um die 90 °, aber insbesondere um die 90 ° -->