Mathe x^4 - 9x^2 = 0
Hallo kann mir jemand sagen wie ich diese Gleichung nach x auflösen kann ? also : x^4 - 9x^2 = 0
6 Antworten
Ganz einfach
- x² Ausklammern. Daran erkennst du dann auch sofort, dass eine doppelte Nullstelle bei 0 vorliegt
x ^4 - 9 x^2 = 0
x (x^2-9) = 0
x^2 - 9 = 0 I+9
x^2 = 9 I√
x1 = 0
x2 = 0
x3 = 3
x4 = -3
Hallo !
Durch Substition.
x^4 - 9x^2 = 0
z = x ^ 2
z ^ 2 - 9 * z = 0
z _ 1 = 0
z _ 2 = 9
Da z = x ^ 2 ist, deshalb ist x = +/- √(z)
x _ 1 = + √(0) = 0
x _ 2 = - √(0) = 0
x _ 3 = + √(9) = +3
x _ 4 = - √(9) = -3
LG Spielkamerad
Ja, das kannst du machen wie immer du möchtest. In der Mathematik gibt es viele Lösungsmethoden.
Du ersetzt z=x^2 ,dies ergibt 4 *z^2 - 9 *z =0 Dies ist eine Quadratische Funktion,die mit der p-q-Formel gelöst wird.
Ausserdem ist bei x=0 eine Nullstelle,dies sieht man sofort ,weil nur Terme mit x vorkommen (x^4 und x^2) .Solche Funktionen haben immer eine Nullstelle bei x=0
Durch das Ausklammern von x^2 siehst direkt, dass Du bei 0 eine doppelte Nullstelle hast.
Hinzukommen dann noch die Nullstellen aus dem Teil, welcher dann in der Klammer steht.
Du kannst auch die Substitution nutzen: u = x^2
Somit gilt:
u^2 -9u = 0
(u-4,5)^2 -4,5^2 = 0
(u-4,5)^2 = 4,5^2
u = 4,5 +-4,5
u = 0 & 9
Rücksubstitution:
u = x^2 = 0 => +-0 1. & 2. Nullstelle
u = x^2 =9 => 3 & -3 3. & 4. Nullstelle
also ich gebe das immer in den taschenrechner ein und der rechnet mir dann automatisch die nullstellen aus :) Kannst du das nicht machen?
ich bin jetzt in der 8. klasse (ich glaub bei euch in deutschland ist das die 12.?) Also mache gerade Matura/Abitur :)
okay bei uns ist das anders da müssen wir in beiden teilen positiv sein :D
haha ist ja kake :D welche Klasse bist du denn ?
Habt ihr das auch wenn ihr bei einem teil negativ seid dass dann die gesamte arbeit negativ ist? :)
ne die Punkte werden ja dann Zsm gerechnet :)
was? wieso nicht? also das würde bei uns nie in frage kommen ;) Naja wie wärs wenn du x heraushebst und dann einfach umformst? so würde ich das machen :)
ja immer ein Teil mit TR & einen ohne :D aber danke hab's schon , muss die x^2 ausklammern :)
doch aber wir dürften in der Klausur den Taschenrechner nicht immer benutzen haha
an das Substitutionsverfahren hab ich auch schon gedacht , aber ich glaube es ist hier jetzt zu umfangreich also würde es ja reichen die x^2 auszuklammern :)