Lineare Algebra, wie löst man diese Aufgabe?
Heey, bin hier gerade am verzweifeln. Kann mir jemand helfen?
(Gegebene Info: ingesamt sind es 160 Wagen)
1 Antwort
Anzahl der Wagen am Tag n: A = 50-x, B = 46-x, C = 64-x
Anzahl der Wagen am Tag n+1:
A' = (50-x)*0.8 + (46-x)*0.2 + (64-x)*0.2 = 62 - 1.2*x
B' = (50-x)*0.1 + (46-x)*0.6 + (64-x)*0.1 = 39 - 0.8*x
C' = (50-x)*0.1 + (46-x)*0.2 + (64-x)*0.7 = 59 - x
Nebenbedingungen:
(a) 26 <= A < 47
(b) 26 <= A' < 47
(c) 26 <= B
(d) 26 <= B'
(e) 26 <= C
(f) 26 <= C'
Werte einsetzen:
(a) 26 <= 50-x < 47
(b) 26 <= 62 - 1.2*x < 47
(c) 26 <= 46-x
(d) 26 <= 39 - 0.8*x
(e) 26 <= 64 - x
(f) 26 <= 59 - x
Vereinfachen:
(a) 3 < x <= 24
(b) 25/2 < x <= 30
(c) x <= 20
(d) x <= 16.25
(e) x <= 38
(f) x <= 33
Schnittmenge x € {13,14,15,16}
@LisaMarie013
und wie kommt das =62 -1,2 hoch x zustande?
erstmal danke für die Antwort, aber wie genau kommst du auf die schnittmenge?