Guten Abend,
ich habe gerade eine Runde Karten gespielt, um genau zu sein das Kartenspiel Arschl0ch. Für die Aufgabe ist relevant, dass jeder 3 Karten bekommt. Dazu werden 3 Karten in die Mitte gelegt. Außerdem haben wir nur noch zu zweit gespielt, es werden zu Beginn also 9 Karten ausgelegt. Nun zu meiner Frage: Ich überlege mittlerweile seit längerem, wie man die Wahrscheinlichkeit dafür berechnet, dass von diesen ersten neun Karten alle vier Asse dabei sind. Da das Thema Stochastik schon ein bisschen her ist, bin ich gerade nicht mehr in dem Thema drin, aber es ist ja vom Modell her das Urnenmodell ohne zurücklegen. Die Anzahl an Pfade für die ersten 9 Karten wäre ja 32 über 9, richtig? Also 28.048.800 verschiedene Möglichkeiten der ersten 9 Karten. Weiter komme ich dann aber auch schon nicht mehr. Außer, dass ich mir dachte, dass bei der ersten Karte ja die Wahrscheinlichkeit für ein** Ass 4/32** beträgt, für eine andere Karte 28/32. Wenn die erste Karte** jetzt ein Ass** ist, dann beträgt die nächste Wahrscheinlichkeit ja aber 3/31 und für jede andere 28/31. Es ist also keine Bernoulli-Kette, richtig?