Ebene orthogonal zur Ebene (durch Punkt, Koordinatenform)?

2 Antworten

Jede Ebene, die den Normalenvektor von E1 als einen Richtungsvektor hat, ist orthogonal zu E1.

Ein Punkt der Ebene ist gegeben.

Wenn die Ebenengleichung ebenfalls in Normalenform gegeben sein soll, solltest du ein Umrechnungsverfahren kennen oder im Internet finden können.

Bilde das Skalarprodukt aus den Normalenvektor der Ebene E1 und setze für den zweiten Normalenvektor die Bezeichnung n1,n2,n3. Also

( 1 -1 2) • (n1 n2 n3) = 0

Finde n1,n2,n3 und dann nimm für d den Punkt P.

Woher ich das weiß:Hobby – Selbststudium

drahcir321 
Beitragsersteller
 18.01.2023, 18:07

Danke für deine Antwort. Kannst du das vielleicht genauer erklären?

Niemand18  18.01.2023, 18:15
@drahcir321

Du hast ja n1-n2+2n3 = 0. Kannst du n1,n2 und n3 finden, sodass die obere Gleichung gilt?