Worauf bezieht sich die Expansion des Raumes nach dem Urknall, worauf nicht, und warum?

2 Antworten

Vom Beitragsersteller als hilfreich ausgezeichnet

betroffen sind erstens nur strukturen die nicht gravitativ (oder sonst wie) gebunden sind, und zweitens gilt das nur auf skalen die so groß sind dass das universum so homogen ist dass man die gesamte materie darin als homogenes fluid beschreiben kann.

das sind skalen die viel größer sind als einzelne galaxien

Woher ich das weiß:Berufserfahrung – Physiker (Teilchenphysik)

auf verschiedenen Größenskalen wirken verschiedene Einflüsse. Innerhalb kompakter Haushaltsgegenstände wirkt die el.magn. Wechselwirkung, in und zwischen lokalen Himmelskörpern wirkt Gravitation, erst zwischen Galaxienhaufen kommt die dunkle Energie zum Tragen.

Dazu versteht man am besten zunächst die Hubblekonstante.

Unter der Annahme einer linearen Ausdehnung des Universums ist der Skalenfaktor a(t) =D(t)/D0 einer beliebigen Distanz D und der Distanz D0 zum Zeitpunkt t0 im Universum linear abhängig von der Zeit t: 

a = da/dt*t (1) mit einer Ausdehnungsgeschwindigkeit

da/dt = H*a (2)

Der Faktor H ist die Hubblekonstante (die besser Hubbleparameter heißen sollte, weil sie nicht konstant ist - in der Tat folgt aus einer linearen Ausdehnung konstante Ausdehnungsgeschwindigkeit da/dt und damit H = 1/t mit 2 in 1 eingesetzt), hat beim Urknall eine Polstelle und nimmt seitdem ab, wird aber nie null. 

Kosmologischer Horizont

Objekte in der Entfernung r entfernen sich mit der Geschwindigkeit v(r) = H*r von uns. Man kann nun mit der Lichtgeschwindigkeit c einen Radius rH = c/H definieren, der Hubbleradius genannt wird. Für r = rH ist die Geschwindigkeit v(rH) = c, d.h. theoretisch entfernen sich Objekte in dieser Entfernung mit Lichtgeschwindigkeit von uns (die Spezielle Relativitätstheorie gilt nur lokal und wird dadurch nicht verletzt), und man könnte meinen, dass man dann diese Objekte nie mehr sehen kann, weil ihr Licht nicht gegen die Expansionsgeschwindigkeit ankommt, aber:

1. Licht direkt hinter rH kann es, einmal ausgesandt, mit der Zeit innerhalb von rH schaffen und uns letztlich doch erreichen - die korrekte Rechnung beinhaltet eine Integration der Bewegung mitbewegter Koordinaten und des Lichtsignals von t0 bis unendlich und führt hier zu weit - außerdem...

2. ist die o.g. Annahme der linearen Ausdehnung falsch. Die Ausdehnung unterliegt bremsenden und beschleunigenden Einflüssen (zB die Massendichte einschl. dunkler Materie vs. dunkle Energie), deren Stärke nicht zeitlich konstant war oder sein wird. In Abhängigkeit von diesen Einflüssen kann der Kosmologische Horizont sich bei vorwiegender Bremsung weiter ausdehnen und mehr Objekte sichtbar machen, oder bei vorwiegender Beschleunigung schrumpfen und mehr Objekte verbergen.

Aus diesen beiden Gründen liegt der Kosmologische Horizont nicht beim Hubbleradius, sondern nach aktuellem Stand etwas dahinter (etwa 16 Mrd LJ statt 13,4 Mrd LJ). Mit weiterer Ausdehnung des Universums und sinkender Massendichte könnte die Beschleunigung gewinnen - dann würde der Hubbleparameter auf einen konstanten Wert sinken: die Lösung für die Differentialgleichung da/dt = const*a ist dann eine exponentielle Ausdehnung, die den Kosmologischen Horizont schließlich bis auf gravitativ direkt gebundene Strukturen schrumpfen ließe, und die Reste der Vereinigung aus Milchstraße und NGC224 wären allein in der Dunkelheit.

Partikelhorizont.

Wo aber sind die fernsten Objekte, die wir jetzt schon sehen, wirklich? Als ihr Licht ausgesandt wurde, dh kurz nachdem das Universum transparent wurde, waren sie nur einige Mio LJ entfernt. Während ihr Licht im Raum zu uns unterwegs war, bewegte sich dieser Raum aber mit der Expansionsgeschwindigkeit von uns weg und verlängerte die Reisezeit des Lichtes (und seine Wellenlänge), bis das Licht schließlich hier ankam; inzwischen haben sich die damals aussendenden Objekte bis zum sog. Partikelhorizont entfernt (ca 46 Mrd LJ), also weit hinter dem Kosmologischen Horizont.